

Attachment 1 to Appendix B: Greenhouse Gas Emissions Inventory Technical Documentation

Note: Attachment 1 contains technical data and documentation used to prepare the County's 2015 Greenhouse Gas Emissions Inventory. Attachment 1 will be included in the Greenhouse Technical Appendix to the EIR and removed from Appendix B in future drafts of the General Plan.

Developed By: ASCENT

Unincorporated Ventura County 2015 GHG Inventory

Updated: 4/29/2019

These pages contain the spreadsheets used to calculate the 2015 Greenhouse Gas (GHG) inventory in unincorporated Ventura County.

	ns	Category
Inventory Summary	Consolidates and summarizes the results from all emissions sectors for 2015.	Summary
Demographics	Includes population, housing, and employment data and forecasts for 2015. Calculations exclude Vandenberg Air Force Base and UC Ventura values for unincorporated county totals.	Demographics
Transportation	Calculates the on-road transportation and passenger rail emissions with respect to activity in the unincorporated county.	Calculations
Building Energy	Calculates the emissions from residential, commercial, industrial, and agricultural land uses that consume electricity and natural gas.	Calculations
Offroad	Calculates the emissions from off-road equipment.	Calculations
Solid Waste	Calculates the emissions from waste generation and waste-in-place.	Calculations
mported Water	Calculates emissions from water imported to the unincorporated County.	Calculations
Wastewater	Calculates the emissions from wastewater treatment processes from centralized wastewater treatment facilities and septic systems.	Calculations
Agriculture	Calculates the emissions from agricultural sources.	Calculations
Stationary Source	Calculates the data for major stationary sources in the County.	Calculations
Assumptions	Includes reference material necessary for GHG calculations, including: Conversion factors, mode split, global warming potential (GWP) factors, electricity emission factors, natural gas emission factors, and more.	Background Data and Calculations
EMFAC	Includes emission factor outputs and calculations for on-road vehicles from CARB's Emissions FACtors model.	Background Data and Calculations

TOTA	AL UNINCORPORATED EMISSIONS DETAIL	
	(MT CO2e / YEAR)	
SECTOR	SUBSECTOR	2015
Residential	Electricity	63,164
Residential	Natural Gas	95,292
Commercial	Electricity	28,575
Commercial	Natural Gas	67,442
Industrial	Natural Gas	14,960
Agricultural	Electricity	49,787
Building Energy Total	·	319,220
Transportation	On-Road Transportation	690,207
Transportation	Rail	2,490
Transportation Total		692,696
Solid Waste	Waste Generation	30,864
Solid Waste	Waste In Place	266,616
Solid Waste Total		297,480
Water	Electricity used by water systems outside Unincorporated County	5,002
Wastewater	Septic Systems	5,043
Wastewater	WWTP Process Emissions	2,322
Water and Wastewater Tota	ıl 💮	12,367
Off-road	Construction and Mining Equipment	15
Off-road	Industrial Equipment (Forklifts, Sweepers)	8
Off-road	Light Commercial (Generators, Pumps, Compressors)	4
Off-road	Oil Drilling (Drill Rigs, Lifts, Pumps, Generators)	20
Off-road	Portable Equipment	4
Off-road	Transportation Refrigeration Units	1
Off Road Equipment Total		52
Agriculture	Residue Burn	8,514
Agriculture	Enteric Fermentation	8,225
Agriculture	Manure Management	869
Agriculture	Farm Equipment	67,834
Agriculture	Agricultural Irrigation Pumps - Diesel	21,625
Agriculture	Pesticide	658
Agriculture	Fertilizer	146,983
Agriculture	Lime Application	291
Agriculture	Urea Fertilization	4,894
Agriculture Total		259,894
Stationary Sources	Oil and Gas Production	275,096
Stationary Source Total		275,096
TOTAL		1,856,804
	I	
		•

Notes: Inventory excludes high GWP gases, such as refrigerants and sulfuryl fluoride. High-GWP gases are regulated exclusively by State and Federal agencies and are not within jurisdictional control of the County. Industrial Electricity excluded because data request did not meet sample size requirements of SCE's 5/25 Aggregation Rule.

Unincorported Ventura County GHG Inventory 2015

Demographics

Ventura County Greenhouse Gas Emissions Inventory - 2015

Population	2015 Source
County	850,491 Department of Finance
Incorporated	752,758 Department of Finance
Unincorporated	97,733 Department of Finance
Percent Unincorporated	11.49%
Jobs (Civilian)	2015
County	319,588 Ventura County Background Report (p. 2-37)
Incorporated	286,699 Ventura County Background Report (p. 2-37)
Unincorporated	32,889 Ventura County Background Report (p. 2-37)
Percent Unincorporated	10.29%
Housing Units	2015
County	273,286 Ventura County Background Report (p. 2-37)
Incorporated	241,095 Ventura County Background Report (p. 2-37)
Unincorporated	32,191 Ventura County Background Report (p. 2-37)
Percent Unincorporated	11.78%

Transportation

Emissions Summary (MTCO2e)

	2015
On-Road Transportation	690,207
Rail	2,490
Total	692,696

On-Road Transportation Activity in 2015

Unincorporated County VMT

VMT Calculations	Source	2015 Annual VMT
100% Internal, 50% I-E *	Adjusted from County-wide based on unincorporated VMT percentage	1,807,538,340
Urban Bus VMT**		120,450
Total Annual VMT		1,807,658,790

County-wide VMT

						2015 Annual VMT
VMT Calculations	Source	2012 Average Daily VMT	2012 Annual VMT	2040 Average Daily VMT	2040 Annual VMT	(Interpolated)
Internal-Internal	VCTC Model	10,746,259	3,922,384,526	11,731,596	4,282,032,422	3,960,918,229
Internal-External						
(unincorporated Ventura to						
areas south and east of Ventura						
County)	VCTC Model *	15,537,451	5,671,169,732	17,026,660	6,214,730,729	5,729,408,411
Internal-External						
(unincorporated Ventura to						
north areas of Ventura County)	Calculated					25,050,315
50% Internal-External	Calculation (RTAC Method)					2,877,229,363
100% Internal, 50% I-E *	Calculation (RTAC Method)					6,838,147,592

^{*}Source: Jim Damkowitch 11/7/2018 - Email to Ascent Environmental. Note: This VMT only includes light duty and heavy duty vehicle trips. It is assumed that this VMT does not include bus trips. Bus VMT is added separately.

Note: The Regional Transportation Advisory Committee's recommended approach to calculating VMT is based on CARB's guidance for MPOS $(https://www.arb.ca.gov/cc/sb375/staff_report_sb375_targets_update.pdf)\\$

	Source	2010	2012	2020	2040	2015 (Interpolated)
Daily VMT						
I-X/X-I Santa Barbara County -						
Entire Ventura County						
(SB/VC)**	SBCAG	62,920		74,342		68,631
Daily VMT						
I-X/X-I South and East Areas -						
Entire Ventura County						
(SE/VC)**	VCTC Model		15,537,451		17,026,660	15,697,009
Ratio of SB/VC to SE/VC ***	Calculated					0.00437

^{*}According to Jim Damkowitch, the VCTC model excludes trips north of Ventura County because the VCTC model is based on SCAG's model which does not include Santa Barbara County.

Unincorporated VMT Adjustment

VMT Split by Boundary Method According to HPMS data

Unincorporated County Local Road VMT (Boundary	1,394,030	HPMS
Unincorporated County VMT SHS VMT Boundary	3,519,851	GHD via Caltrans Volume Report
Other Unincorporated VMT Boundary	22,950	HPMS
Total Unincorporated VMT (Boundary)	4,936,831	
Total Incorporated Local Road VMT (Boundary)	6,689,160	HPMS
Total Incorporated SHS VMT (Boundary)	7,037,589	GHD via Caltrans Volume Report
Other Incorporated VMT	13,080	HPMS
Total Incorporated VMT (Boundary)	13,739,829	
Percent Nonincorporated	26.4%	

VMT Distribution in Unincorporated County by vehicle class

7%
0.054%

Source: SCAG 2016 RTP model. Provided by Annabel Drayton VCREA - Email to Ascent Environmental 11/15/2018

^{**} There is only one bus route in Ventura County that stops in the unincorporated area: Line 16 of Gold Coast Transit. The distance travelled by that route within the unincorporated area is about 10 miles. It travels along Ventura Ave between Ventura and Ojai, with stops in between. There are 17 northbound trips and 16 southbound trips daily, according to Gold Coast Transit route schedules. This results in an annual VMT of 120,450 VMT per year. This excludes bus VMT not associated with this route.

^{***} This ratio is applied to SB/VC VMT to estimate the VMT between SB County and Unincorporated Ventura County.

On-Road Transportation Emissions Calculations

Annual VMT	
	2015
Light Duty and Heavy Duty VMT	1,807,538,340
Bus VMT	120,450

VMT Distribution	2015
Light Duty	1,686,431,501
Heavy Duty	121,106,839
Buses	120.450

EMFAC 2017 Weighted Vehicle Emission Factors for Ventura County			
gCO2/mi	2015		
Light Duty	360		
Heavy Duty	677		
Ruses	1 502		

gCH4/mi	2015
Light Duty	0.011
Heavy Duty	0.019
	4.600

gN2O/mi	2015
Light Duty	0.0001
Heavy Duty	0.0003
Buses	0.0039

gCO2e/mi	2015
Light Duty	361
Heavy Duty	677
Buses	1.544

TOTAL On-Road Vehicle Emissions

MTCO2e	2015
Light Duty	608,000
Heavy Duty	82,021
Buses	186

Vehicle Category assignments based on EMFAC 2007 Vehicle Categories used in EMFAC 2017

SCAG Vehicle Category	EMFAC 2007 Vehicle Category
Light Duty	LDA
Light Duty	LDT1
Light Duty	LDT2
Light Duty	LHDT1
Light Duty	LHDT2
Light Duty	MCY
Heavy Duty	HHDT
Heavy Duty	MDV
Heavy Duty	MH
Heavy Duty	MHDT
Buses	OBUS
Buses	SBUS
Ruses	LIBLIS

Building Energy

Unincorporated Ventura County Greenhouse Gas Emissions Inventory - 2015

Emissions Summary (MTCO2e)

	2015
Residential	158,456
Commercial	96,017
Industrial	14,960
Agricultural	49,787
Total	319,220

Building Energy Emissions in 2015

			201
Energy Type (and Utility)	Energy Unit	Emission Factor per Energy Unit*	MT CO2e
Electricity - SCE	kWh	MT/MWh	0.240
Natural Gas - So Cal Gas	Therm	MT/therm	0.006779
		County Average Electricity EF (g/kWh)	240.39

^{*} See Assumptions Tab

					2015
Sector	Customer Type	Energy Type	Utility/Source	Energy Unit	Annual Usage
Residential Energy	Residential	Electricity	SCE	kWh	262,750,031
Commercial Energy	Commercial	Electricity	SCE	kWh	118,867,785
Industrial Energy	Industrial	Electricity	SCE	kWh	-
Agricultural Energy	Agricultural	Electricity	SCE	kWh	207,106,250
Residential Energy	Residential	Natural Gas	SoCal Gas	Therms	14,056,995
Commercial Energy	Commercial	Natural Gas	SoCal Gas	Therms	9,948,602
Industrial Energy	Industrial	Natural Gas	SoCal Gas	Therms	2,206,808
	Total Electricity	у		kWh	588,724,066
	Total Natural G	as		Therms	26,212,405
		-		PG&E	0
				SCE	588,724,066

					2015
Sector	Sector Customer Type Energy Type		Utility/Source	Energy Unit	MT CO2e
Residential Energy	Residential	Electricity SCE kWh		kWh	63,164
Commercial Energy	Commercial	Electricity	SCE	kWh	28,575
Industrial Energy	Industrial	Electricity	SCE	kWh	-
Agricultural Energy	Agricultural	Electricity	SCE	kWh	49,787
Residential Energy	Residential	Natural Gas	SoCal Gas	Therms	95,292
Commercial Energy	Commercial	Natural Gas	SoCal Gas	Therms	67,442
Industrial Energy	Industrial	Natural Gas	SoCal Gas	Therms	14,960
	Total Electricity	1		kWh	141,526
	Total Natural Ga	as		Therms	177,694
				TOTAL	319,220

Note: No propane usage is assumed because the number of Socal Gas residential customers in 2015 (32,717) is more than the number of households in the unincorporated are according to the County's background report (32,191). This means there could be more than one natural gas bill sent to a household considered by the County (See the Demographics tab).

Source: Data requests from SoCal Gas and Southern California Edison for customers in the unincorporated County. Industrial electricity use was not available due to SCE's 5/25 rule that states that any industrial data provided by a utility must have more than 5 customers an no single customer's data accounts for more than 25 percent of total aggregated data.

Off-Road Vehicles and Equipment

Unincorporated Ventura County Greenhouse Gas Emissions Inventory

Emissions Summary (MTCO2e)

·	2015
Offroad Emissions	860

Offroad Emissions in 2015 for Unincorporated Ventura County

					Scaled to	
	MT CO2	MT CH4	MT N2O	MT CO2e	unincorporated area	% total GHG
ConstMin	14.626	0.003	0.001	15	Jobs	28.7%
Industrial	7.929	0.001	0.001	8	Jobs	16.1%
Light Commercial	3.298	0.004	0.001	4	Jobs	7.0%
Oil Drilling	20.212	0.002	0.001	20	All in	39.4%
Portable Equipment	3.834	0.001	0.000	4	Population	7.5%
TRU	0.728	0.001	0.000	1	Jobs	1.4%
Total	50.626	0.013	0.003	52		100.0%

Note: Agricultural equipment included under the Agriculture Sector

OFFROAD 2017 outputs for 2015 for Entire Ventura County

									Tons NOx/day
	Fuel Type	Fuel Use (gal/year)	Tons ROG/day	Tons TOG/day	Tons CO2/day	Tons CH4/day	Tons N2O/day	MT CO2e	(to calculate N2O)
AirGrSupp	Diesel	1,874	6.78E-05	8.07E-05		1.29E-05	1.88E-06		
AirGrSupp	Gasoline	11,067	2.63E-04	3.15E-04	0.27	5.17E-05	5.61E-05	0.32	1.35E-03
AirGrSupp	Nat Gas	1,241	0.00E+00	3.38E-06	0.02	3.38E-06	6.10E-06	0.03	1.47E-04
Commercial Harborcraft	Diesel	4,874,984	1.71E-01	2.03E-01	21.18	3.24E-02	4.88E-03	25.85	1.95E+00
Cargo Handling Equipment	Diesel	69,035	5.60E-04	6.66E-04	2.13	1.06E-04	6.91E-05	2.37	7.57E-03
ConstMin	Diesel	4,022,763	1.11E-01	1.33E-01	123.93	2.12E-02	4.03E-03	138.52	1.24E+00
ConstMin	Gasoline	309,600	4.59E-02	5.49E-02	5.00	9.02E-03	1.75E-03	6.34	4.22E-02
Industrial	Diesel	463,136	1.72E-02	2.05E-02	14.27	3.28E-03	4.64E-04	15.97	1.48E-01
Industrial	Gasoline	1,020,595	2.62E-02	3.14E-02	22.82	5.15E-03	4.34E-03	26.72	1.04E-01
Industrial	Nat Gas	1,815,674	0.00E+00	3.42E-03	32.81	3.42E-03	6.47E-03	38.38	1.55E-01
Light Commercial	Diesel	249,415	1.49E-02	1.80E-02	7.42	3.13E-03	2.50E-04	8.35	6.63E-02
Light Commercial	Gasoline	1,082,860	1.58E-01	1.89E-01	17.29	3.11E-02	5.71E-03	21.79	1.37E-01
Light Commercial	Nat Gas	239,429	0.00E+00	3.34E-04	4.36	3.34E-04	5.86E-04	5.01	1.41E-02
Locomotive	Diesel	-	3.44E-03	4.10E-03	0.00	6.55E-04	0.00E+00	0.02	7.08E-02
Military	Diesel	66,324	1.34E-03	1.62E-03	2.00	2.81E-04	6.64E-05	2.23	1.45E-02
Ocean Going Vessels	Diesel	14,249,266	7.53E-01	9.00E-01	451.29	1.47E-01	1.43E-02	506.20	1.35E+01
Oil Drilling	Diesel	594,860	1.17E-02	1.39E-02	18.34	2.22E-03	5.96E-04	20.47	1.33E-01
Portable Equipment	Diesel	981,997	2.17E-02	2.58E-02	30.27	4.13E-03	9.83E-04	33.80	2.59E-01
TRU	Diesel	4,074	3.75E-02	4.46E-02	6.42	7.12E-03	4.08E-06	7.27	3.61E-01
Total		30,058,194	1.37	1.65	759.87	0.27	0.04	860	18.216

Source: OFFROAD2017 (https://www.arb.ca.gov/orion/)

OFFROAD 2017 Outputs for 2013 for Entire Ventura County						
	Percent in					
	Unincorporated					
Demographics Category	Area	Source				
Population	11%	Department of Finance				
New Housing Units	34%	DOF 2017/2018 (http://www.dof.ca.gov/Forecasting/Demographics/Estimates/E-5/)				
Households	12%	Background Report				
Jobs	10%	Background Report				

Solid Waste GHG Emissions

Unincorporated Ventura County Greenhouse Gas Emissions Inventory - 2015

Emissions Summary (MTCO2e)

	2015
Waste Generation	30,864
Waste in Place	266,616
Total	297,480

Solid Waste Emissions in 2015

Source	MT CO2	MT CH4	MT N2O	MT CO2e
Waste Generation	0.00	1,235	0	30,864
Waste-in-Place	0.00	10,663	0	266,616
Total	0.00	11,897	0	297,480

Waste Generation Emissions in 2015

	Tonnage Delivered			Percent of year under LFG collection	Generated Methane					
	from Unincorporated		Percent of Total	or control in 2016	Emissions with LFG					*** • 1
Receiving Landfill	Ventura County Only	Total ADC	Tonnage	(%)	Capture (MT CH4)	MT CO2	MT CH4	MT N2O	MT CO2e	% total
Antelope Valley Public Landfill	47	3	0%	0%	2		2		46	0.1%
Azusa Land Reclamation Co. Landfill	84		0%	0%	3		3		77	0.3%
Bakersfield Metropolitan (Bena) SLF	353		0%	0%	13		13		325	1.1%
Calabasas Landfill	3,160	2,597	3%	100%	53		53		1,324	4.3%
Chiquita Canyon Sanitary Landfill	5,954		5%	100%	55		55		1,369	4.4%
Commerce Refuse-To-Energy Facility			0%	100%	1		-		-	0.0%
El Sobrante Landfill	32		0%	100%	0		0		7	0.0%
Frank R. Bowerman Sanitary LF	23		0%	100%	0		0		5	0.0%
H.M. Holloway Inc.	27		0%	0%	1		1		25	0.1%
Lancaster Landfill and Recycling Center	1	2	0%	0%	0		0		3	0.0%
Olinda Alpha Sanitary Landfill	90		0%	100%	1		1		21	0.1%
Simi Valley Landfill & Recycling Center	27,984	4,463	24%	100%	298		298		7,462	24.2%
Southeast Resource Recovery Facility			0%	0%	1		-		-	0.0%
Tajiguas Sanitary Landfill	94	34	0%	100%	1		1		29	0.1%
Toland Road Landfill	78,554	9,153	67%	100%	807		807		20,170	65.4%
Total Ventura Unincorporated	116,403	16,252			1,235		1,235		30,864	100.0%

Source: CalRecycle, EPA LMOP Database, US Community Protocol Equation SW.4.1

Landfill Gas Collection Start Dates

	LFG Project Start	
Landfill	date	
Antelope Valley Public Landfill	1/1/2020	<-indicates planned but no current project. No start date indicated
Azusa Land Reclamation Co. Landfill	1/1/2020	<-indicates planned but no current project. No start date indicated
Bakersfield Metropolitan (Bena) SLF	6/30/2016	
Calabasas Landfill	10/1/2002	
Chiquita Canyon Sanitary Landfill	11/23/2010	
Commerce Refuse-To-Energy Facility	1/1/1981	Started in 1981. No date provided.
El Sobrante Landfill	4/1/2004	
Frank R. Bowerman Sanitary LF	12/8/2007	
H.M. Holloway Inc.	1/1/2020	<-supplier of ag gypsum
Lancaster Landfill and Recycling Center	1/1/2020	<-indicates no current project
Olinda Alpha Sanitary Landfill	6/28/2012	
Simi Valley Landfill & Recycling Center	4/1/2004	
Southeast Resource Recovery Facility	1/1/2020	project shut down in 1993
Tajiguas Sanitary Landfill	3/31/2000	
Toland Road Landfill	8/1/2004	

Source: EPA's LMOP database

Waste-in-Place Emissions at Landfills Located in the Unincorporated County in 2015

							Fugitive Emissions			
						Average Tons Disposed				
Landfill/Disposal Site	Waste-in-Place (Tons) *	Status	Has LFG Capture?	Date Open	Date Closed	Annually	MT CO2	MT CH4	MT N2O	MT CO2e
Alden V Johnson	?	Closed	No	?	1967					
Arnaz Road	?	Closed	No	?	?					
Bailard Landfill	3,150,000	Closed	Yes	1961	1996	90,000		1,848		46,206
Balcom Canyon II	?	Closed/unpermitted	No	?	1986					
Balcom Canyon III	?	Closed/unpermitted	No	?	1997					
BMB Norcom 355	inert debris/engineered	Inactive	No	?	?					
Burns Property DS	400 CY construction/der	Closed	No	?	2008					
Elkins Ranch 1980	?	Closed/unpermitted	No	?	?					
Fishback Illegal Disposal Site (IDS)	?	Closing	No	?	?					
Lagoon Landfill	?	Closed/Naval with n	No	1952	1975					
Ojai County 1964	?	Closed	No	?	1964					
Otto Hopkins	?	Closed	No	?	1996					
Ozena 1967 Converted	?	Closed/unpermitted	No	?	?					
Ozena Modified Sanitary Landfill	3,120	Closed	No	1975	1986	284		2		49
Phillip and Alice Lee Property	?	To Be Determined/u	No	?	?					
Piru Dump	?	Closed/violation	No	?	1971					
Rockwell International - Old Area I LF	?	Closed (artillery field	No	1955	2005					
Rockwell International - Old Area II LF	?	Closed (artillery field	No	?	?					
Runway Landfill/Pt Mugu	?	Closed (electroplation	No	?	?					
			Facility currently							
Saticoy County 1962	?		studying LFG potential	1946	1963					
Simi Valley Landfill	19966988		Yes	1970	2024	489106.8904		6145	0.126	153662.04
Somis Dump	?	Closed/unpermitted		?	?					
Toland Road Landfill	7046886.846	Active	Yes	1970	2027	156597.4855		2668	0.028	66699.09
TOTAL							0	10,663	0	266,616
Total from Closed Landfills	23,120,108						0	10,663	0	266,616

^{*} Tonnage data for landfills with "?" were not available. Based on the sparse documentation available for these individual landfills, many of these landfills without tonnage data are small unpermitted sites or military disposal sites. It is assumed that waste-in-place emissions from these landfills are minimal. Thus, calculations exclude landfills without tonnage data.

Source: CalRecycle Facility Reports, EPA LMOP Database, EPA Greenhouse Gas Emissions from Large Facilities, CARB Landfill Emissions Tool model (https://www.arb.ca.gov/cc/landfills/tool.htm)

Note: Excludes composting facilities, transfer stations, inert debris disposal sites, and planned landfills not yet in operation.

Solid Waste: Additional Background Data and Assumptions & Methods

Equation SW.4.1 M	ethane Emissions	
CH ₄ Emissions =	$GWP_{CH4} * (1-CE) * (1-OX) * M * \sum_{i} P_{i} * EF_{i}$	
Where:		
Term	Description	Value
CH ₄ emissions	 Community generated waste emissions from waste M (mtCO₂e) 	Result
GWP _{CH4}	= CH ₄ global warming potential	
М	= Total mass of waste entering landfill (wet short	User Input
P _i	ton) = Mass fraction of waste component i	User Input
EF _i	= Emission factor for material i (mtCH ₄ /wet short ton)	Table SW.5
CE	= Default LFG Collection Efficiency	No Collection, 0 Collection, 0.75
OX	= Oxidation rate	0.10
	ed by ICLEI staff and Solid Waste Technical Advisory Comm	ittee. Emissions factors
	cipal Solid Waste Publication (2008) available at	
nttp://www.epa.go	v/epawaste/nonhaz/municipal/pubs/msw2008data.pdf	

Mind MCWfor Heisenstead Verburg Country	0.041	CalRecycle Waste Characterization for Unincorporated Ventura County
Mixed MSW for Unincorporated Ventura County		and WARM emission factors.

Solid Waste GHG Emissions

Unincorporated Ventura County Greenhouse Gas Emissions Inventory - 2015

Landfill	Methane (MT CH4)	N2O (MT N2O)	MT CO2e			
Fugitive Landfill and LFG Combustion Emissions						
Toland Road Landfill	2,667.63	0.028	66,699			
Sub Total	2,668		66,699			
TOTAL	2,668	0	66,699			

GWP (AR4 factors)

Methane (CH ₄)	25
Nitrous Oxide (N ₂ O)	298

Note

Methane emissions are found in the MRR report under "Subpart HH" under "Methane Generation and Emission Values" as either the result of Methane Emissions Equation HH6 or HH8. They are reported as CO2e using AR4 GWP factors.

All other gases are combusted through landfill gas collection.

Uses recommended Reporting Approach using EPA's Mandatory Reporting Rule

No unincorporated waste was reported to be disposed at any of these sites.

Note that Ascent performed separate calculations of HH6 for the two landfills that resulted in slightly higher emissions than reported in EPA MRR. (e.g. 2060 MT CH4 for American Canyon and 500 MT CH4 for clover flat)

Sources

EPA Mandatory Reporting Rule (March 2015) (http://ghgdata.epa.gov/ghgp/main.do)

IPCC Fourth Assessment Report Factors used (Chapter 2. Table 2.14)

Imported Water

Unincorporated Ventura County Greenhouse Gas Emissions Inventory - 2015

Emissions Summary (MTCO2e)

	2015
Imported Water	5,002

Imported Water Emissions in 2015

Source	MG Supplied/year	Electricity Use (kWh/MG)	Electricity Use (kWh)	EF Source	Percent of MG
Groundwater	73,043	240	17,559,093	SCE	83%
SWP	3,598	236	848,951	CA Avg	4%
Surface Water	7,387	240	1,775,679	SCE	8%
Recycled Water	3,635	240	873,904	SCE	4%
TOTAL	87,663		21,057,628		
TOTAL Local	84,065		20,208,676		96%
TOTAL Imported	3,598		848,951		4%

Note: Private groundwater was not available from the Ventura County Water Agencies

Electricity Emissions Factors (g/kWh)				
EF Source		2015		
SCE		240.39		
CA Avg		235.96		

Electricity Use (kWh)				
Source	2015			
Groundwater	118,064,545			
SWP	21,198,226			
Surface Water	8,877,349			
Recycled Water	331,407			
Total	148.471.528			

GHG Emissions (N	GHG Emissions (MTCO2e)					
Source	EF Source		2015			
Groundwater	SCE		28,382			
SWP	CA Avg		5,002			
Surface Water	SCE		2,134			
Recycled Water	SCE		80			
		TOTAL	35,598			
		TOTAL Local	30,596			
		TOTAL Imported	5,002			

Note: Emissions associated with electricity used to power pumps within the unincorporated County are assumed to be captured in the Building Energy sector.

					2015 Unincornora	ted County Water Su	nnly and Domand		201	5 Water-Related Elec	tricity Use and Emis	sions	
		2013 Ventura Count	Water Supply and D	Demand (Acre-Feet)		Acre Feet) (Calculated			E	Electricity Use (MWh)			Emissions (MTCO2e)
	Water User/Agency	Agriculture	Municipal & Industrial	Total	Agriculture	Municipal & Industrial	Total	Supply	Conveyance	Treatment	Distribution	Total Electricity Use	
ē	Casitas MWD	8,305	9,990	18,295	8,023	997	9,020	0	0	32	3,527	3,559	856
Nat	City of Ventura	0	4,200	4,200	0	582	582	0	0	19	228	247	59
e /	UWCD	6,257	0	6,257	6,257	0	6,257	0	0	0	2,447	2,447	588
rfa	Private	7,974	0	7,974	7,974	0	7,974	0	0	0	3,118	3,118	750
Sur	Surface Water Total	22,536	14,190	36,726	22,254	414	22,668	0	0	14	8,864	8,877	2,134
Importe d Water	UWCD	0	0	0	0	0	0	0	0	0	0	0	0
por	Calleguas MWD	5,537	105,747	111,283	4,349	6,693	11,041	0	21542	308	-651.44	21,198	5,002
트	Imported SWP Total	5,537	105,747	111,283	4,349	6,693	11,041	0	21,542	308	-651	21,198	4,899
	Casitas MWD				25	3	28	1	0	0	11	12	3
iter	Ojai GMA	3401	2,037	5,438	3,401	237	3,638	1,067	0	8	1,422	2,497	600
W	FCGMA	105,346	44,949	150,295	105,346	5,224	110,570	13,147	0	170	43,235	56,553	13,595
oun	UWCD	83,243	13,115	96,358	83,243	1,524	84,767	12,304	0	50	33,146	45,499	10,938
oug	Private (unreported)	24,591	4,868	29,459	24,591	566	25,157	3,648	0	18	9,837	13,503	3,246
0	Groundwater Total	216,581	64,969	281,550	216,606	7,554	224,160	30,167	0	246	87,652	118,065	28,382
	Oak Park Water Service	0	790	790	0	92	92	0	0	63	3	63	15
	Lake Sherwood CSD	0	484	484	0	56	56	0	0	38	}	38	9
	California Water Service Co.	0	644	644	0	75	75	0	0	51	!	51	12
	City of Simi Valley/ County 0 Waterworks No. 8	0	56	56	0	7	7	0	0	4		4	1
	Camarillo San. District	1,840	46	1,886	1,840		1,845	0	0	1		1	1
e .	Camrosa Water District Non-	4,687	1,372	6,059	4,687	159	4,846	0	0	10:	n	109	26
Water	Potable	·	1,372		·	159	·	U	U	10:	9	109	26
sycled	Camrosa Water District Non- Potable to PVCWD	3,241	0	3,241	3,241	0	3,241	0	0	0		0	0
Rec	Camrosa Water District CWRF Recycled (Title 22)	901	268	1,170	901	31	932	0	0	21	!	21	5
	Moorpark WWTP/County Waterworks No. 1	3	718	721	3	83	86	0	0	57	7	57	14
	City of Ventura/Ventura Water	0	700	700	0	25	25	0	0	17	7	17	4
	Reclamation Facility	40.572	F 070	45.754	40.672	484	44.450			22		224	80
TOTAL	Recycled Water Total	10,672 255.325	5,078 189.984	15,751 445.310	10,672 255.325	484 22.082	11,156 277.407	30.167	21.542	33. 96,7		331 148,472	
TOTAL		Source: Table 8 of the	,	-,-	,	ipal and industrial wa		, -	,-			alifornia, which gets its	,
		and Demand. Prepare Protection District. Jan	d for: Ventura County	Watershed es as of July 2018		ation. Assumes all agi ncorporated County. A	ricultural water use Agricultural water	water, SWP, CRA, and		wetropolitari water Di	istrict of southern Co	injornia, wriich gets its	water from surface

Source: Ventura County 2013 Water Supply and Demand Report

Imported Water: Urban Water Energy Intensity Matrix in kWh/MG

Supply		Conveyance		Treatment		Distribution		
Surface Water	0	SWP-L.A. Basin	8325	EPRI (Avg)	100	EPRI Avg.	1200	
Groundwater	4.45/MG/Foot	SWP-Bay Area	3150			Flat Topography	proposed	
Ocean Desalination	13800	SWP-Central Coast	3150			Moderate Topograp	roposed	
		SWP-San Joaquin						
Brackish Water Desa	a 1,240- 5,220	Valley	1510			Hilly Topography	proposed	
Recycled Water	0	CRA-L.A. Basin	6140			Recycled Water	1,200-3,000	
		Hetch Hetchy- Bay						
		Area	0					
		Mokelumne						
		Aqueduct	160					
		Local/Intrabasin	120					

in kWh/AF

Supply		Conveyance		Treatment		Distribution		
Surface Water	-	SWP-L.A. Basin	2,713	EPRI (Avg)	33	EPRI Avg.		391
Groundwater (AF/M	1.45	SWP-Bay Area	1,026			Flat Topography	proposed	
Ocean Desalination	4,497	SWP-Central Coast	1,026			Moderate Topograpl	proposed	
		SWP-San Joaquin						
Brackish Water Desa	1,053	Valley	492			Hilly Topography	proposed	
Recycled Water	-	CRA-L.A. Basin	2,001			Recycled Water		684
		Hetch Hetchy- Bay						
		Area	-					
		Mokelumne						
		Aqueduct	52					
		Local/Intrabasin	39					

Source: CEC-500-2006-118

Additional Background Data and Assumptions

Metropolitan Water District of Southern California Energy Intensity for 2014 (used as a proxy for Calleguas water)

kWh/AF

Conveyance	1,951			
Treatment	46			
Distribution	-59			
Source: Metropolitan 2015 UWMP				

Imported Water: Average Groundwater Depth in Ventura

	Well Depth (ft)	Source
County Mira Monte Well	20	Well located in Upper Ventura River Groundwater Basin. This is the average depth of groundwater in that area. CMWD UWMP AND AWMP - 2016 UPDATE
Ojai GMA	202.3	Appendix B of Ventura's 2013 Groundwater Section
FCGMA	82	Appendix B of Ventura's 2013 Groundwater SectionAnnual Report
UWCD	100.1	Appendix B of Ventura's 2013 Groundwater SectionAnnual Report
Private (unreported)	100	Assumed

Wastewater

Unincorporated Ventura County Greenhouse Gas Emissions Inventory - 2015

The unincorporated area uses a combination of centralized WWTP treatment at fringe communities near cities and on-site septic tank systems.

Wastewater Emissions in 2015

Source	MT CO2	MTCH4	MTN2O	MT CO2e
Septic Methane Emissions	0	202	0	5,043
WWTP Process Emissions	0	75	1	2,322
Total	0	277	1	7,365

Wastewater Emission Calculations

	Wastewater Treatment Emissions				
I	WWTP Service by Percent of Unincorporated Population	Served Population	MT CH4*		Total CO ₂ e Emissions (MT CO ₂ e/yr)
Septic Tank Treatment	53%	51,613	202	0.00	5,043
Centralized Sewer Treatment	47%	46,120	75.08	1.50	2,322
	Total Seption			0	5,043
Total WWTP Process Emissions			75	1	2,322
Total			277	1	7,365

^{*} See methods below from EPA Inventory of US GHG Emissions and Sinks

Note: Aerobic treatment does not result in CH4 emissions

Background Data and Assumptions

Demographics Summary	2015	Source
Unincorporated Population	97,733	Background Report
Unincorporated Households	32,191	Background Report
		Email from Ventura County (Shelley Sussman) to Ascent Environmental
Approximate Number of Private Septic Systems in County	17,000	(Brenda Hom/Erik de Kok) (10/17/2018)
Number of Unincorporated HH's on Septic	17,000	Assumption
Number of Unincorporated HH's on Sewer	15,191	Calculation
Percent of Unincorporated Population on Septic	53%	Calculation

	From Table 7-3 of the background report					
Agency	WWTP Name	Rated Capacity (MGD¹)	Percent of WW treated from Unincorporated County	Unincorporated WW treated in WWTPs (MGD)	Anaerobic Treatment?	Total Number of Connections
County Service Area No. 29	treated by City of Ventura	N/A				317
County Service Area No. 30	treated by City of Oxnard	N/A				510
County Service Area No. 32	countywide individual sewage disposal	N/A				N/A
County Service Area No. 34	treated by City of Oxnard	N/A				N/A
Camarillo Utility Enterprise	treated by Camarillo Sanitary District	N/A	0%			57
Todd Road Jail	On site WWTP	0.085	100%	0.09	No	N/A
Ventura County Waterworks District No. 1	Moorpark Wastewater Treatment Plant	5	15%	0.75	No	10,000 (population)
Ventura County Waterworks District No. 16	On site WWTP	0.5	100%	0.50	No	400 (population)
Camarillo Sanitary District	Camarillo WRP	7.25	40%	2.90	No	70,000 (population, city and unincorporated)
Ojai Valley Sanitary District	Ojai Valley WWTP	3	63%	1.88	No	20,000 (customers)
Saticoy Sanitary District	Jose Flores WWTP	0.25	100%	0.25	No	271
Triunfo Sanitation District	Tapia Water Reclamation Facility	16	21%	3.38	No	12,300
Camrosa Water District	Camrosa Water Reclamation Facility	1.5	100%	1.50	No	6,900
City of Oxnard	City of Oxnard WWTP	32.7	1%	0.48	Yes, with cogeneration	40,000
City of Simi Valley	Water Quality Control Plant	12.5	1%	0.16	No	40,000 (527 unincorporated)
City of Thousand Oaks	Hill Canyon Wastewater Treatment Plant	14	9%	1.22	Yes, with cogeneration	130,000 (population)
City of Ventura	Ventura Water reclamation facility	9	9%	0.80	No	N/A

Percent of Unincorporated Centralised WW treated aerobically
Percent of Unincorporated Centralised WW treated anaerobically
12%

Wastewater Calculation Methods

Emissions from Septic Systems = A = $US_{POP} \times (\% \text{ onsite}) \times (EF_{SEPTIC}) \times 1/10^{9} \times Days$

= [(% collected) × (total BODs produced) × (% aerobic) × (% aerobic w/out primary) + (% collected) × (total BODs produced) × (% aerobic) × (% aerobic w/out primary) + (% collected) × (% total BODs produced) × (% aerobic) × (% aerobic w/primary) × (1.% BOD removed in prim. treat.)] × (% operations not well managed) × (%) × (MC3-aerobic_not_well_man)

 $= [(\% \ collected) \times (\text{total BODs, produced}) \times (\% \ anaerobic) \times (\% \ anaerobic)$

= Flow to septic systems / total flow

 $Emissions from Anaerobic Digesters = D \\ = [(POTW_flow_AD) \times (digester gas)/ (per capita flow)] \times conversion to m^3 \times (FRAC_CH_1) \times (365.25) \times (density of (clay \times (1-BB) \times 1/10^6)) \times (1-BC) \times (1-BC)$

Total CH_4 Emissions (kt) = A + B + C + D

% onsite

density of CH₄ 1/10⁹

USpor = U.S. population

% onsite	= Flow to septic systems / total flow
% collected	= Flow to POTWs / total flow
% aerobic	= Flow to aerobic systems / total flow to POTWs
% anaerobic	= Flow to anaerobic systems / total flow to POTWs
% aerobic w/out primary	= Percent of aerobic systems that do not employ primary treatment
% aerobic w/primary	= Percent of aerobic systems that employ primary treatment
% BOD removed in prim. treat.	= 32.5%
% operations not well managed	 Percent of aerobic systems that are not well managed and in which some anaerobic degradation occurs
% anaerobic w/out primary	= Percent of anaerobic systems that do not employ primary treatment
% anaerobic w/primary	= Percent of anaerobic systems that employ primary treatment
EFSEPTIC	= Methane emission factor (10.7 g CH ₄ /capita/day) - septic systems
Days	= days per year (365.25)
Total BOD ₅ produced	= kg BOD/capita/day × U.S. population × 365.25 days/yr
Bo	 Maximum CH₄-producing capacity for domestic wastewater (0.60 kg CH₄/kg BOD)
1/106	= Conversion factor, kg to kt
MCF-aerobic_not_well_man.	= CH ₄ correction factor for aerobic systems that are not well managed (0.3)
MCF-anaerobic	= CH ₄ correction factor for anaerobic systems (0.8)
DE	 CH₄ destruction efficiency from flaring or burning in engine (0.99 for enclosed flares)
POTW_flow_AD	 Wastewater influent flow to POTWs that have anaerobic digesters (MGD)
digester gas	 Cubic feet of digester gas produced per person per day (1.0 ft³/person/day)
per capita flow	= Wastewater flow to POTW per person per day (100 gal/person/day)
conversion to m3	= Conversion factor, ft ³ to m ³ (0.0283)
FRAC_CH ₄	= Proportion CH ₄ in biogas (0.65)

= 662 (g CH₄/m³ CH₄) = Conversion factor, g to kt

	Stationary CH ₄ from Incomplete Combustion of Digester Gas (default)	_
Annual CH ₄ emissi	ons (metric tons CO ₂ e) =	
(P x Digester Gas	x F _{CH4} x ρ(CH ₄) x (1-DE) x 0.0283 x 365.25 x 10 ⁻⁶) x GWP	

Term		Description	Value
P	=	population served by the WWTP with anaerobic digesters	user input
Digester Gas	=	cubic feet of digester gas produced per person per day [ft ³ /person/day]	1.0
F _{CH4}	=	fraction of CH ₄ in biogas	0.65
ρ(CH ₄)	=	density of methane [g/m ³]	662.00
DE	=	CH ₄ Destruction Efficiency	.99
0.0283	=	conversion from ft ³ to m ³ [m ³ /ft ³]	0.0283
365.25	=	conversion factor [day/year]	365.25
10 ⁻⁶	=	conversion from g to metric ton [metric ton/g]	10 ⁻⁶
GWP	=	Global Warming Potential	21

Equation 10.4	Process CH ₄ from Wastewater Treatment Lagoons (default values)					
Annual CH ₄ emissions (metric tons CO ₂ e) =						
((P x F _{ind-com}) x BOD	D ₅ load x (1-F _P) x Bo x MCF _{anaerobic} x 365.25 x 10 ⁻³) x GWP					

Where:

Where:

Term		Description	Value
Р	=	population served by lagoons adjusted for industrial discharge, if applicable [person]	user input
F _{ind-com}	=	factor for industrial and commercial co-discharge waste into the sewer system	1.25
BOD₅ load	=	amount of BOD₅ produced per person per day [kg BOD₅/person/day]	0.090
F _P	=	fraction of BOD ₅ removed in primary treatment, if present	0.325*
Во	=	maximum CH ₄ -producing capacity for domestic wastewater [kg CH ₄ /kg BOD₅ removed]	0.6
MCF anaerobic	=	CH ₄ correction factor for anaerobic systems	8.0
365.25	=	conversion factor [day/year]	365.25
10 ⁻³	=	conversion from kg to metric ton [metric ton/kg]	10 ⁻³
GWP	=	Global Warming Potential	21
	glous	tory of US Greenhouse Gas Emissions and Sinks: 1990-2007, Chapter 8, 8-9 (200 , G., F.L. Burton, and H.D. Stensel, Wastewater Engineering: Treatment and Reu	

Equation 10.7 Process N ₂ O Emissions from WWTP with Nitrification/Denitrification					
Annual N ₂ O emissions (metric tons CO ₂ e) =					
((P _{total} x F _{ind-com})	x EF nit/denit x 10 ⁻⁶) x GWP				

Where:

total population that is served by the centralized WWTP adjusted for industrial discharge, if applicable [person] factor for industrial and commercial co-discharge waste into the sewer system	user input 1.25
factor for industrial and commercial co-discharge waste into the sewer system	1.25
system	1.25
emission factor for a WWTP with nitrification/denitrification	7
[g N ₂ O/person/year]	
conversion from g to metric ton [metric ton/g]	10 ⁻⁶
N ₂ O Global Warming Potential	310
	[g N ₂ O/person/year] conversion from g to metric ton [metric ton/g]

	Equation 10.10	Process N ₂ O Emissions from Effluent Discharge (default N load data)
l	Annual N ₂ O emissio	ns (metric tons CO ₂ e) =
	((P _{total} x F _{ind-com}) x (To 365.25 x 10 ⁻³) x GW	otal N Load - N uptake x BOD ₂ load) x EF effluent x 44/28 x (1 - F plant nit/denit) x P

Where:

Term		Description	Value
P _{total}	=	population served [person]	user input
Find-com	=	factor for industrial and commercial co-discharge waste into the sewer system	1.25
Total N Load ²⁷	=	total nitrogen load [kg N/person/day]	0.026
N uptake ²⁸	=	nitrogen uptake for cell growth in aerobic system (kg N/kg BOD ₅)	0.05^{1}
	=	nitrogen uptake for cell growth in anaerobic system (e.g., lagoon) (kg N/kg BODs)	0.0051
BODs load	=	amount of BODs produced per person per day [kg BODs/person/day]	0.090
EF effluent	=	emission factor [kg N ₂ O-N/kg sewage-N produced]	0.005
44/28	=	molecular weight ratio of N2O to N2	1.57
F plant nit/denit	=	fraction of nitrogen removed for the centralized WWTP with nitrification/denitrification	0.71
	=	fraction of nitrogen removed for the centralized WWTP w/o nitrification/denitrification	0.01
365.25	=	conversion factor [day/year]	365.25
10 ⁻³	=	conversion from kg to metric ton [metric ton/kg]	10 ⁻³
GWP	=	Global Warming Potential	310

Source: EPA Inventory of US Greenhouse Gas Emissions and Sinks: 1990-2007, Chapter 8, 8-13 (2009), except: Grady, C. P. L., Jr., G. T. Dalgger, and H. C. Lim, Biological Wastewater Treatment, p. 108-109, 644

Agriculture

Unincorporated Ventura County Greenhouse Gas Emissions Inventory - 2015

Agricultural Emissions in 2015

					Scaled	
	MT CO2	MT CH4	MT N2O	MT CO2e	MTCO2e	% of total Ag
Residue Burn	7,928	8	1	8,514	8,514	3%
Enteric Fermentation	0	329	0	8,225	8,225	3%
Manure Management	0	16	2	869	869	0%
Farm Equipment	67,410	7	1	67,834	67,834	26%
Agricultural Irrigation Pumps - Diesel	22,257	0	0	22,257	21,625	9%
Pesticide	0	0	0	660	658	0%
Fertilizer	0	0	495	147,441	146,983	56%
Lime Application	294	0	0	294	291	0%
Urea Fertilization	4,941	0	0	4,941	4,894	2%
Total	102,830	360	499	261,035	259,894	57%

Agricultural GHG Emissions - Summary

Unincorporated Ventura County Greenhouse Gas Emissions Inventory - 2015

Sector	MT CO2	MT CH4	MT N2O	MT CO2e/yr	Scaled MTCO2e/	% of total Ag
Residue Burn	7,928.13	7.70	1.32	8,514	8,514	3.3%
Enteric Fermentation	0.00	329.00	0.00	8,225	8,225	3.2%
Manure Management	0.00	15.73	1.60	869	869	0.3%
Farm Equipment	67,410.11	7.18	0.82	67,834	67,834	26.1%
Agricultural Irrigation Pumps - Diesel	22,257.17	0.00	0.00	22,257	21,625	8.3%
Pesticide	0.00	0.00	0.00	660	658	0.3%
Fertilizer	0.00	0.00	494.77	147,441	146,983	56.6%
Lime Application	293.98	0.00	0.00	294	291	0.1%
Urea Fertilization	4,940.87	0.00	0.00	4,941	4,894	1.9%
Total	102830.27	359.61	498.51	261,035	259,894	100.0%

Notes

- 1) Pesticide and fertilizer data from 2014; scaled to 2015 by change in agriculture land use.
- 2) Lime and Urea data from 2012; scaled to 2015 by changes in agriculture land use.
- 3) Ag Pumps data from 2003; scaled to 2015 by changes in agriculture land use.

Greenhouse Gas	GWP
Methane (CH₄)	25
Nitrous Oxide (N₂O)	298

Agricultural GHG Emissions - Residue Burning

Unincorporated Ventura County Greenhouse Gas Emissions Inventory - 2015

Summary Table from VCAPCD

Emission Source	Tons Material Burned	CO2 (tons/yr)	CH4 (tons/yr)	Total GHG (tons/yr)
Agricultural Burning	6,697.91	8,688.64	8.4	8,697.09
Prescribed Burning	31.19	50.54	0.0	04 50.58
Total Open Burning	6,729.10	8,739.18	8.4	8,747.66

Revised Summary Table Including GWP into Calculations

Emission Source	Tons Material Burned	CO2 (tons/yr)	CH4 (tons/yr)	N2O (tons/yr)		CO2 (MT/yr)	CH4 (MT/yr	N2O (MT/yr	Total GHG (I
Agricultural Burning	6,697.91	8,688.64		8.44	1.45	7,882.29	7.66	1.32	8,465.77
Prescribed Burning	31.19	50.54		0.04	0.01	45.85	0.04	0.01	48.63
Total						7,928.13	7.70	1.32	8,514.40

Conversion Factor:

1 MT 1.1023 ton (US)

Greenhouse Gas	GWP
Methane (CH ₄)	25
Nitrous Oxide (N ₂ O)	298

Sources

IPCC 2007.

Email from VCAPCD (Chuck Thomas) to Ascent Environmental (Erik de Kok) on April 18, 2016.

Agricultural GHG Emissions - Livestock

Unincorporated Ventura County Greenhouse Gas Emissions Inventory - 2015

		Enteric F	ermentation				Manure Man					Emissions	
					Emission Factor								
		Emission Factor			(kg CH4/head-			(kg N ₂ O/head-		MT			MT
Livestock Type		(kg CH ₄ /head-year)	MT CH ₄ /year	CO ₂ e/year	year)2	MT CH4/year3	CO2e/year4		MT N₂O/year	CO2e/year5	MT CH4	MT N2O	CO2e/year6
Beef Cattle	3,400	70.7	240	6,007	1.3	4	111	0.0	0.00	0	245	0	6,118
Dairy Cattle	0	93.0	0	0	156.7	0	0	1.5	0.00	0	0	0) 0
Other Cattle	1,600	55.4	89	2,217	2.4	4	96	0.9	1.44	428	92	1	L 2,740
Lambs		8.00	0	0	0.8	0	0	0.0	0.00	0	0	0	0
Slaughter Sheep		8.00	0	0	0.8	0	0	0.01	0.00	0	0	0	0
Hogs	38	1.50	0	1	18.9	1	18	0.02	0.00	0	1	0	20
Chickens	50,871	0	0	0	0.133	7	169	0.003	0.16	48	7	0	216
Total			329	8,225		16	393		1.60	476	345	2	9,094

Greenhouse Gas	
Methane (CH ₄)	25
Nitrous Oxide (N ₂ O)	298

Cattle Population Calculation

Livestock Type	CASR 2015	2014 Crop Report Livestock	Adjusted Population Distribution
All Cattle (CWT only - From Crop	21,030	21,030	
Report)			
All Cattle (population - from CASR)	5,000	5,000	5,000
Beef Cattle	3,400	3,400	3,400
Dairy Cattle	-		-
Other Cattle	1,600		1,600

Enteric Fermentation Emission Factor Calculation

		County Total 2013 (State	MMT CO2e from	
Livestock	State Total 2013	categories calculated)		kg CH4/head
Dairy Cattle Total	3,533,836		0	93.05
Dairy calves	920,353	-	0.2818	12.25
Dairy cows	1,780,000	-	6.6406	149.23
Dairy replacements 0-12 months	245,322	-	0.2810	45.82
Dairy replacements 12-24 months	588,161	-	1.0170	69.17
Beef Cattle Total	1,020,156	3,4	00	70.67
Beef calves	312,208	1,04	1 0.0882	11.30
Beef cows	620,000	2,06	6 1.5573	100.47
Beef replacements 0-12 months	26,135	8	7 0.0421	64.44
Beef replacements 12-24 months	61,813	20	6 0.1148	74.28
Other Cattle Total	922,373	1,60	0	55.42
Bulls	70,000	12	1 0.1818	103.89
Heifer feedlot	167,097	29	0 0.1803	43.16
Heifer stockers	104,021	18	0 0.1672	64.31
Steer feedlot	303,514	52	6 0.3187	42.00
Steer stockers	277,741	48	2 0.4298	61.90
Goats	141,000	24	5 0.0176	5.00
Horses	770,457	1,33	6 0.3467	18.00
Sheep	570,000	98	9 0.1140	8.00
Swine	105,000	18	2 0.0039	1.50

Sources:

http://www.arb.ca.gov/cc/inventory/doc/methods_00-12/annex_3a_enteric_fermentation.pdf 2013 Query of ARB GHG Inventory (http://www.arb.ca.gov/app/ghg/2000_2013/ghg_sector.php)

Manure Management Emission Factor Calculation

				MMT CO2e from		MMT CO2e from	
Sub Sector Level 2	Activity Subset	Sub Sector Level 3	State Total 2013		· ·		kg N2O/head
Cattle	Dairy cows	Anaerobic digester	2122	0.0.	81.54	0.01	1.08
Cattle	Dairy cows	Anaerobic lagoon	103571		336.42	0.33	1.08
Cattle	Dairy cows	Daily spread	18783	3 0.01	2.25	0.01	0.25
Cattle	Dairy cows	Deep pit	184		149.42	0.00	1.09
Cattle	Dairy cows	Liquid/slurry	35944	4 1.34	149.42	0.20	1.90
Cattle	Dairy cows	Pasture	1194	*****	6.75	0.00	0.00
Cattle	Dairy cows	Solid storage	16200	1 0.07	18.00	0.09	1.91
Cattle	Dairy heifers	Daily spread	9003		0.71	0.00	0.11
Cattle	Dairy heifers	Dry lot	72845	5 0.04	2.12	0.51	2.35
Cattle	Dairy heifers	Liquid/slurry	728	5 0.01	46.87	0.00	0.83
Cattle	Dairy heifers	Pasture	771	2 0.00	2.12	0.00	0.00
Cattle	Feedlot - heifers 500+ lbs	Dry lot	16495	3 0.01	2.21	0.09	1.91
Cattle	Feedlot - heifers 500+ lbs	Liquid/slurry	214	4 0.00	60.04	0.00	0.64
Cattle	Feedlot - steers 500+ lbs	Dry lot	29961	9 0.02	2.15	0.17	1.96
Cattle	Feedlot - steers 500+ lbs	Liquid/slurry	214	4 0.00	60.04	0.00	0.64
Cattle	Not on feed - beef cows	Pasture	62000	0 0.05	3.19	0.00	0.00
Cattle	Not on feed - bulls 500+ lbs	Pasture	7000	0 0.01	3.30	0.00	0.00
Cattle	Not on feed - calves <500 lbs	Pasture	156593	6 0.02	0.56	0.00	0.00
Cattle	Not on feed - heifers 500+ lbs	Pasture	19196		2.05	0.00	0.00
Cattle	Not on feed - steers 500+ lbs	Pasture	27774	1 0.01	1.88	0.00	0.00
Other Livestock	Goats	Dry lot	1046		0.37	0.00	0.37
Other Livestock	Goats	Pasture	12035		0.37	0.00	0.00
Other Livestock	Horses	Dry lot	6163		3.29	0.02	1.34
Other Livestock	Horses	Pasture	70882	****	3.29	0.00	0.00
Other Livestock	Sheep	Dry lot	17727		0.70	0.02	0.40
Other Livestock	Sheep	Pasture	39273		0.70	0.00	0.00
Poultry	Broilers	Pasture	9705		0.02	0.00	0.00
Poultry	Broilers	Poultry with bedding	960840	*****	0.02	0.01	0.00
Poultry	Hens 1+ yr	Anaerobic lagoon	241128		1.29	0.00	0.00
Poultry	Hens 1+ yr	Poultry without bedding	1768272		0.03	0.00	0.00
Poultry	Other chickens	Anaerobic lagoon	120	0.01	1.39	0.02	0.00
Poultry	Other chickens	Poultry without bedding	880		0.03	0.00	0.01
Poultry	Pullets	Anaerobic lagoon	52920		1.29	0.00	0.00
Poultry	Pullets	Poultry without bedding	388080		0.03	0.00	0.00
	Turkeys	Pasture Pasture	5166	*****	0.08	0.00	0.00
Poultry	· · · · · · · · · · · · · · · · · · ·		511500	*****	0.08	0.00	0.00
Poultry	Turkeys	Poultry with bedding		0 0.00			
Swine	Swine - breeding	Anaerobic digester	250		#DIV/0!	0.00	#DIV/0!
Swine	Swine - breeding	Anaerobic lagoon			46.08	0.00	0.13
Swine	Swine - breeding	Deep pit	146		19.40	0.00	0.12
Swine	Swine - breeding	Liquid/slurry	35		19.41	0.00	0.18
Swine	Swine - breeding	Pasture	50		0.63	0.00	0.00
Swine	Swine - breeding	Solid storage	16		1.26	0.00	0.22
Swine	Swine - market < 50 lbs	Anaerobic digester		0.00	#DIV/0!	0.00	#DIV/0!
Swine	Swine - market < 50 lbs	Anaerobic lagoon	1403		9.72	0.00	0.04
Swine	Swine - market < 50 lbs	Deep pit	821		4.09	0.00	0.04
Swine	Swine - market < 50 lbs	Liquid/slurry	196		4.09	0.00	0.05
Swine	Swine - market < 50 lbs	Pasture	284	0.00	0.13	0.00	0.00
Swine	Swine - market < 50 lbs	Solid storage	94		0.27	0.00	0.07
Swine	Swine - market 120-179 lbs	Anaerobic digester		0.00	#DIV/0!	0.00	#DIV/0!
Swine	Swine - market 120-179 lbs	Anaerobic lagoon	1152	****	31.12	0.00	0.12
Swine	Swine - market 120-179 lbs	Deep pit	674	8 0.00	13.08	0.00	0.11
Swine	Swine - market 120-179 lbs	Liquid/slurry	161	1 0.00	13.08	0.00	0.16
Swine	Swine - market 120-179 lbs	Pasture	233	4 0.00	0.43	0.00	0.00

Unincorported Ventura County GHG Inventory 2015

Swine	Swine - market 120-179 lbs	Solid storage	780	0.00	0.85	0.00	0.20
Swine	Swine - market 180+ lbs	Anaerobic digester	0	0.00	#DIV/0!	0.00	#DIV/0!
Swine	Swine - market 180+ lbs	Anaerobic lagoon	12029	0.01	41.65	0.00	0.16
Swine	Swine - market 180+ lbs	Deep pit	7041	0.00	17.50	0.00	0.15
Swine	Swine - market 180+ lbs	Liquid/slurry	1681	0.00	17.50	0.00	0.22
Swine	Swine - market 180+ lbs	Pasture	2435	0.00	0.57	0.00	0.00
Swine	Swine - market 180+ lbs	Solid storage	814	0.00	1.14	0.00	0.27
Swine	Swine - market 50-119 lbs	Anaerobic digester	0	0.00	#DIV/0!	0.00	#DIV/0!
Swine	Swine - market 50-119 lbs	Anaerobic lagoon	12531	0.01	17.90	0.00	0.07
Swine	Swine - market 50-119 lbs	Deep pit	7334	0.00	7.52	0.00	0.07
Swine	Swine - market 50-119 lbs	Liquid/slurry	1751	0.00	7.52	0.00	0.09
Swine	Swine - market 50-119 lbs	Pasture	2537	0.00	0.24	0.00	0.00
Swine	Swine - market 50-119 lbs	Solid storage	847	0.00	0.49	0.00	0.11

Sources:

http://www.arb.ca.gov/cc/inventory/doc/methods_00-12/annex_3b_manure_management.pdf 2013 Query of ARB GHG Inventory (http://www.arb.ca.gov/app/ghg/2000_2013/ghg_sector.php)

Sources

Ventura 2015.

Bureau of Labor Statistics 2016

CDFA 2015.

USDA 2012, 2015, 2016

IPCC 2007.

National Chicken Council 2015

Agricultural GHG Emissions - Agricultural Equipment

Unincorporated Ventura County Greenhouse Gas Emissions Inventory - 2015

	Carbon Dioxide (CO ₂)	Methane (CH ₄)	Nitrous Oxide (N ₂ O)	CO ₂ e
Emissions@tons/day)	204	0.02	0.00	205
Emissions@MT/yr)	67,410	7	1	67,834

Note

1) OFFROAD2007 model outputs do not account for impacts from the recessions in 2007-2011. Newer models, however, are incomplete. ARB recommends using OFFROAD 2007 where data is not available in newer offroad models.

2) Assumes all agricultural equipment is operated in the unincorporated county.

Sources

ARB 2007.

IPCC 2007.

Greenhouse Gas	
Methane (CH ₄)	25
Nitrous Oxide (N₂O)	298

	eason AvgDays		Equipment	Fuel	MaxHP Class	C/R	Pre	Hand	Port	County		N2O Exhaust	CH4 Exhaust
2015 /	nnual Mon-Sur	. 2	265005010 2-Wheel Tractors	G4	5 Agricultura	a U	Р	NHH	NP	Ventura	1.46E-02	2.16E-0	5 2.00E-05
2015 /	nnual Mon-Sur	. 2	265005010 2-Wheel Tractors	G4	15 Agricultura	a U	Р	NHH	NP	Ventura	7.04E-02	7.77E-0	5 6.17E-05
2015 /	nnual Mon-Sur	. 2	265005010 2-Wheel Tractors	G4	25 Agricultura	a U	Р	NHH	NP	Ventura	3.78E-03	2.89E-0	6 3.50E-06
2015 /	nnual Mon-Sur	. 2	265005015 Agricultural Tractors	G4	120 Agricultura	a U	Р	NHH	NP	Ventura	7.12E-01	1.45E-0	4 1.27E-04
2015 /	nnual Mon-Sur	. 2	265005015 Agricultural Tractors	G4	175 Agricultura	a U	Р	NHH	NP	Ventura	1.45E-01	2.66E-0	5 1.25E-05
2015 /	nnual Mon-Sur	. 2	265005020 Combines	G4	120 Agricultura	a U	Р	NHH	NP	Ventura	6.07E-02	4.70E-0	6 2.16E-06
2015 /			265005020 Combines	G4	175 Agricultura	a U	Р	NHH	NP	Ventura	5.23E-02	3.49E-0	
2015 /			265005020 Combines	G4	250 Agricultura	a U	N	NHH	NP	Ventura	1.11E-02		
2015 /	nnual Mon-Sur	. 2	265005025 Balers	G4	50 Agricultura	a U	Р	NHH	NP	Ventura	1.23E-01	3.30E-0	5 1.98E-05
2015 /	nnual Mon-Sur	. 2	265005025 Balers	G4	120 Agricultura	a U	Р	NHH	NP	Ventura	1.14E-01	2.51E-0	5 1.15E-05
2015 /	nnual Mon-Sur	. 2	265005030 Agricultural Mowers	G4	15 Agricultura	a U	Р	NHH	NP	Ventura	2.64E-02	3.27E-0	5 2.35E-05
2015 /	nnual Mon-Sur	. 2	265005030 Agricultural Mowers	G4	25 Agricultura	a U	Р	NHH	NP	Ventura	4.85E-02	3.94E-0	5 4.53E-05
2015 /	nnual Mon-Sur	. 2	265005035 Sprayers	G4	5 Agricultura	a U	Р	NHH	NP	Ventura	2.84E-02	4.61E-0	5 3.83E-05
2015 /	nnual Mon-Sur	. 2	265005035 Sprayers	G4	15 Agricultura	a U	Р	NHH	NP	Ventura	1.54E-02	1.89E-0	5 1.77E-05
2015 /	nnual Mon-Sur	. 2	265005035 Sprayers	G4	25 Agricultura	a U	Р	NHH	NP	Ventura	9.70E-02	7.43E-0	5 1.08E-04
2015 /	nnual Mon-Sur	. 2	265005035 Sprayers	G4	50 Agricultura	a U	Р	NHH	NP	Ventura	2.34E-02	6.76E-0	6 3.84E-06
2015 /		. 2	265005035 Sprayers	G4	120 Agricultura	a U	Р	NHH	NP	Ventura	8.02E-02	1.80E-0	5 8.25E-06
2015 /	nnual Mon-Sur	. 2	265005035 Sprayers	G4	175 Agricultura	a U	Р	NHH	NP	Ventura	3.62E-02	6.29E-0	6 2.21E-06
2015 /		. 2	265005040 Tillers	G4	15 Agricultura	a U	N	NHH	NP	Ventura	1.74E+00	1.63E-0	3 1.48E-03
2015 /	nnual Mon-Sur	. 2	265005045 Swathers	G4	120 Agricultura	a U	Р	NHH	NP	Ventura	4.14E-01	8.14E-0	5 4.36E-05
2015 /	nnual Mon-Sur	. 2	265005045 Swathers	G4	175 Agricultura		Р	NHH	NP	Ventura	4.53E-01	8.05E-0	
2015 /	nnual Mon-Sur	. 2	265005050 Hydro Power Units	G4	5 Agricultura	a U	Р	NHH	NP	Ventura	4.27E-03	6.02E-0	6 5.92E-06
2015 /	nnual Mon-Sur	. 2	265005050 Hydro Power Units	G4	15 Agricultura	a U	Р	NHH	NP	Ventura	3.62E-02	4.26E-0	5 3.27E-05
2015 /	nnual Mon-Sur	. 2	265005050 Hydro Power Units	G4	25 Agricultura	a U	Р	NHH	NP	Ventura	2.93E-02	2.33E-0	5 2.80E-05
2015 /	nnual Mon-Sur	. 2	265005050 Hydro Power Units	G4	50 Agricultura	a U	Р	NHH	NP	Ventura	8.44E-03	1.36E-0	6 6.39E-07
2015 /	nnual Mon-Sur	. 2	265005050 Hydro Power Units	G4	120 Agricultura	a U	Р	NHH	NP	Ventura	1.81E-03	1.68E-0	7 4.83E-08
2015 /	nnual Mon-Sur	. 2	265005055 Other Agricultural Eq	Juipr G4	5 Agricultura	a U	P	NHH	NP	Ventura	1.94E-03	3.01E-0	6 2.61E-06
2015 /	nnual Mon-Sur	. 2	265005055 Other Agricultural Eq	juipr G4	15 Agricultura	a U	Р	NHH	NP	Ventura	4.24E-03	4.40E-0	6 3.84E-06
2015 /	nnual Mon-Sur	. 2	265005055 Other Agricultural Eq	juipr G4	25 Agricultura	a U	Р	NHH	NP	Ventura	2.70E-03	1.75E-0	6 2.55E-06
2015 /	nnual Mon-Sur	. 2	265005055 Other Agricultural Eq	juipr G4	50 Agricultura	a U	Р	NHH	NP	Ventura	5.78E-03	1.44E-0	6 7.44E-07
2015 /	nnual Mon-Sur	2	265005055 Other Agricultural Eq	juipr G4	120 Agricultura	a U	Р	NHH	NP	Ventura	7.64E-02	1.27E-0	5 5.68E-06
2015 /			265005055 Other Agricultural Eq	juipr G4	175 Agricultura	a U	Р	NHH	NP	Ventura	1.72E-02		
2015 /	nnual Mon-Sur	. 2	265005055 Other Agricultural Eq	juipr G4	250 Agricultura	a U	N	NHH	NP	Ventura	1.12E-02	1.29E-0	6 4.13E-07
2015 /	nnual Mon-Sur	. 2	270005015 Agricultural Tractors	D	15 Agricultura	a U	Р	NHH	NP	Ventura	2.53E+00	0.00E+0	0 2.65E-04
2015 /	nnual Mon-Sur	. 2	270005015 Agricultural Tractors	D	25 Agricultura	a U	Р	NHH	NP	Ventura	5.97E+00	0.00E+0	0 6.50E-04

2015 Annual	Mon-Sun	2270005015 Agricultural Tractors D	50 Agricultura U	P	NHH	NP	Ventura	2.11E+01	0.00E+00	5.15E-03
2015 Annual	Mon-Sun	2270005015 Agricultural Tractors D	120 Agricultura U	P P	NHH	NP NP	Ventura	5.19E+01	0.00E+00 0.00E+00	5.15E-03 5.91E-03
2015 Annual	Mon-Sun		175 Agricultura U	P	NHH	NP	Ventura	5.00E+01	0.00E+00	3.90E-03
		zz. cocco io , igi ioaitara. Tractoro z				NP NP			0.00E+00 0.00E+00	
2015 Annual	Mon-Sun		250 Agricultura U	N N	NHH		Ventura	4.62E+01		2.42E-03
2015 Annual	Mon-Sun	ZZ. 00000 io / igiloantara: i i aotoro Z	500 Agricultura U	N P	NHH	NP	Ventura	1.50E+01	0.00E+00	7.17E-04
2015 Annual	Mon-Sun	2270005020 Combines D	120 Agricultura U	P	NHH	NP	Ventura	4.50E-01	0.00E+00	4.10E-05
2015 Annual	Mon-Sun	2270005020 Combines D		•	NHH	NP	Ventura	8.78E-01	0.00E+00	5.35E-05
2015 Annual	Mon-Sun	2270005020 Combines D	250 Agricultura U	N	NHH	NP	Ventura	1.32E+00	0.00E+00	5.27E-05
2015 Annual	Mon-Sun	2270005020 Combines D	500 Agricultura U	N	NHH	NP	Ventura	7.26E-02	0.00E+00	2.59E-06
2015 Annual	Mon-Sun	2270005025 Balers D	50 Agricultura U	P	NHH	NP	Ventura	2.07E-04	0.00E+00	3.01E-08
2015 Annual	Mon-Sun	2270005025 Balers D	120 Agricultura U	P	NHH	NP	Ventura	2.18E-01	0.00E+00	1.90E-05
2015 Annual	Mon-Sun	2270005030 Agricultural Mowers D	120 Agricultura U	Р	NHH	NP	Ventura	2.51E-02	0.00E+00	2.67E-06
2015 Annual	Mon-Sun	2270005035 Sprayers D	25 Agricultura U	Р	NHH	NP	Ventura	1.22E-02	0.00E+00	1.78E-06
2015 Annual	Mon-Sun	2270005035 Sprayers D	50 Agricultura U	Р	NHH	NP	Ventura	4.26E-03	0.00E+00	6.13E-07
2015 Annual	Mon-Sun	2270005035 Sprayers D	120 Agricultura U	Р	NHH	NP	Ventura	1.03E-01	0.00E+00	8.94E-06
2015 Annual	Mon-Sun	2270005035 Sprayers D	175 Agricultura U	Р	NHH	NP	Ventura	7.19E-02	0.00E+00	4.15E-06
2015 Annual	Mon-Sun	2270005035 Sprayers D	250 Agricultura U	N	NHH	NP	Ventura	7.37E-02	0.00E+00	2.77E-06
2015 Annual	Mon-Sun	2270005035 Sprayers D	500 Agricultura U	N	NHH	NP	Ventura	1.37E-02	0.00E+00	4.58E-07
2015 Annual	Mon-Sun	2270005040 Tillers D	15 Agricultura U	N	NHH	NP	Ventura	3.77E-04	0.00E+00	3.53E-08
2015 Annual	Mon-Sun	2270005040 Tillers D	250 Agricultura U	N	NHH	NP	Ventura	1.23E-03	0.00E+00	5.03E-08
2015 Annual	Mon-Sun	2270005040 Tillers D	500 Agricultura U	N	NHH	NP	Ventura	6.60E-03	0.00E+00	2.41E-07
2015 Annual	Mon-Sun	2270005045 Swathers D	120 Agricultura U	Р	NHH	NP	Ventura	1.35E+00	0.00E+00	1.19E-04
2015 Annual	Mon-Sun	2270005045 Swathers D	175 Agricultura U	Р	NHH	NP	Ventura	2.32E-02	0.00E+00	1.36E-06
2015 Annual	Mon-Sun	2270005050 Hydro Power Units D	15 Agricultura U	Р	NHH	NP	Ventura	8.51E-03	0.00E+00	8.93E-07
2015 Annual	Mon-Sun	2270005050 Hydro Power Units D	25 Agricultura U	Р	NHH	NP	Ventura	4.88E-02	0.00E+00	5.31E-06
2015 Annual	Mon-Sun	2270005050 Hydro Power Units D	50 Agricultura U	Р	NHH	NP	Ventura	9.76E-02	0.00E+00	2.92E-05
2015 Annual	Mon-Sun	2270005050 Hydro Power Units D	120 Agricultura U	Р	NHH	NP	Ventura	1.79E-02	0.00E+00	2.34E-06
2015 Annual	Mon-Sun	2270005055 Other Agricultural Equipr D	15 Agricultura U	Р	NHH	NP	Ventura	2.17E-02	0.00E+00	2.28E-06
2015 Annual	Mon-Sun	2270005055 Other Agricultural Equipr D	25 Agricultura U	Р	NHH	NP	Ventura	1.11E-01	0.00E+00	1.31E-05
2015 Annual	Mon-Sun	2270005055 Other Agricultural Equipr D	50 Agricultura U	Р	NHH	NP	Ventura	1.51E-01	0.00E+00	3.32E-05
2015 Annual	Mon-Sun	2270005055 Other Agricultural Equipr D	120 Agricultura U	P	NHH	NP	Ventura	1.02E+00	0.00E+00	1.09E-04
2015 Annual	Mon-Sun	2270005055 Other Agricultural Equipr D	175 Agricultura U	P	NHH	NP	Ventura	1.53E-01	0.00E+00	1.12E-05
2015 Annual	Mon-Sun	2270005055 Other Agricultural Equipr D	250 Agricultura U	N	NHH	NP	Ventura	2.22E-01	0.00E+00	1.09E-05
2015 Annual	Mon-Sun	2270005055 Other Agricultural Equipr D	500 Agricultura U	N	NHH	NP	Ventura	7.71E-02	0.00E+00	3.42E-06
TOTAL	5411	ELITOGOGO GUISI I IGNOCITURA EQUIPI D	occ , ig. icultura o				, oa.a	203.57853477	0.00247876	0.02168882
								230.01000-11	0.00247070	3.02 100302

Agricultural GHG Emissions - Fertilizer Application

Unincorporated Ventura County Greenhouse Gas Emissions Inventory - 2015

		Nitrogen Emitted As				
Nitrogen Applied in Fertilizer	Nitrogen Applied	N ₂ O				
(tons)	(grams)	(g/g)	MT CO2	MT CH4	MT N2O	MT CO2e/yr
43,631.000	39,581,377,391	494,767,217			494.767	147,441

Factor	Value
Nitrogen Volatilization (g/g)	0.0125
Nitrous Oxide (N₂O) GWP	298

Sources

CDFA 2015 Tonnage Report (https://www.cdfa.ca.gov/is/ffldrs/Fertilizer_Tonnage.html) (All Nitrogen) IPCC 2007.

Agricultural Pumps

Unincorporated Ventura County Greenhouse Gas Emissions Inventory - 2015

		MT CH4 MT N2O	Total Emissions (MT CO2e/yr)
335	0.2007 22257.17		22257.17012
Total	22257.17	0	0 22257.1701

Sources

ARB 2003.

ARB 2006.

Agricultural GHG Emissions - Pesticide Application

Unincorporated Ventura County Greenhouse Gas Emissions Inventory - 2015

Year	Pesticide (Chemical Name)	Commodity Application lbs/yr	lbs/MT Conversion Factor	GWP	MT CO2e/yr	Agricultural Applications	Notes
2014	METHYL BROMIDE (CH3Br)	290,922.86	0.000454	5	660	87	
2014	Sulfuryl Fluoride (SO2F2)	95,086.34	0.000454	4,090	176,403	0	Non-Ag (household pesticide)
2014	Methylene Chloride	0.25	0.000454	9	0	0	Structural Pest Control
2014	Triflurochloromethane (CCl3F) (CFC-11)	0.45	0.000454	4,660	1	0	Structural Pest Control

Sources

CDPR 2015.

IPCC 2013.

4/29/2019

Agricultural GHG Emissions - Liming

Unincorporated Ventura County Greenhouse Gas Emissions Inventory - 2015

Category	Value	Units	Source
mass of lime sold in Ventura County	737	tons/year	CDFA 2013. See Note 1.
mass conversion rate	1.1023	ton/MT	conversion calculation
mass of lime sold in Ventura County	669	MT/year	conversion calculation
emission factor	0.12	MT C/MT lime	IPCC 2006: p. 11.32, Equation 11.13
mass of carbon emitted	80	MT/year	Calculation based on IPCC 2006: p. 11.27, Equation 11.12
molecular mass of CO2	44.01	g/mol	IPCC 2006: p. 11.32, Equation 11.13
atomic mass of C	12.011	g/mol	periodic table
molecular mass ratio	3.664	unitless	ratio calculation
Emissions of CO2	293.98	MT/year	Calculation based on IPCC 2006: p. 11.27, Equation 11.12

Notes

1) It is assumed that the quantity of lime used in the County is equivalent to the quantity sold in the County.

Sources

CDFA 2013.

IPCC 2006.

Agricultural GHG Emissions - Urea

Unincorporated Ventura County Greenhouse Gas Emissions Inventory - 2015

Category	Value	Units	Source
mass of urea sold in Ventura County	7,432	tons/year	CDFA 2013. See Note 1.
mass conversion rate	1.1023	ton/MT	conversion calculation
mass of urea sold in Ventura County	6,742	MT/year	conversion calculation
emission factor	0.20	MT C/MT urea	IPCC 2006: p. 11.32, Equation 11.13
mass of carbon emitted	1,348	MT/year	Calculation based on IPCC 2006: p. 11.32, Equation 11.13
molecular mass of CO2	44.01	g/mol	IPCC 2006: p. 11.32, Equation 11.13
atomic mass of C	12.011	g/mol	periodic table
molecular mass ratio	3.664	unitless	ratio calculation
Emissions of CO2	4,941	MT/year	Calculation based on IPCC 2006: p. 11.32, Equation 11.13

Notes

1) It is assumed that the quantity of urea used in the County is equivalent to the quantity sold in the County.

Sources

CDFA 2013.

IPCC 2006.

Agriculture References

Unincorporated Ventura County Greenhouse Gas Emissions Inventory - 2015

Citation	Source
ARB 2003.	California Air Resources Board. 2003. Fuel Consumption Methodologies for Agricultural Irrigation Engines (category 052-042-1200-0000).
	Available: http://www.arb.ca.gov/ei/areasrc/FULLPDF/FULL1-1.pdf. Accessed April 13, 2016.
ARB 2006.	California Air Resources Board. 2006. Rulemaking to Consider Proposed Amendments to the Stationary Diesel Engine Control Measure -
	Appendix D: Emission Inventory Methodology Agricultural Irrigation Pumps - Diesel. Available:
ARB 2007.	California Air Resources Board. 2007. OffRoad Database. Annual Agriculture Equipment in Ventura County for 2014.
ARB 2014.	California Air Resources Board. 2014 (May). California's 2000-2012 Greenhouse Gas Emissions Inventory: Technical Support
	Document. Available: http://www.arb.ca.gov/cc/inventory/doc/methods_00-12/ghg_inventory_00-
	12_technical_support_document.pdf. Accessed April 12, 2016.
CDFA 2013.	California Department of Food and Agriculture. 2013. Fertilizing Materials Tonnage Report: January - June 2012. Sacramento,
	CA. Available: https://www.cdfa.ca.gov/is/ffldrs/pdfs/2012_Tonnage.pdf. Accessed April 12, 2016.
CDPR 2015.	California Department of Pesticide Regulation. 2014. Annual Pesticide Use Report Indexed by Chemical: Ventura County.
	Available: http://www.cdpr.ca.gov/docs/pur/purmain.htm. Accessed April 12, 2016.
IPCC 2006.	Intergovernmental Panel on Climate Change. 2006. Chapter 11: N2O Emissions from Managed Soils, and CO2 Emissions from
	Lime and Urea Application. Volume 4: Agriculture, Forestry and Other Land Use. Guidelines for National Greenhouse Gas
	Inventories.
IPCC 2007.	Intergovernmental Panel on Climate Change. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working
	Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M.
	Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. New York: Cambridge University Press. Available:
	http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml. Accessed April 13, 2016.
IPCC 2013.	Intergovernmental Panel on Climate Change. 2013. Climate Change 2013: The Physical Science Basis. Working Group I
	Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, GK.
	Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. New York: Cambridge University
	Press. Available: http://www.ipcc.ch/report/ar5/wg1. Accessed April 13, 2016.
Ventura 2015.	Ventura County. 2015 (November). Crop & Livestock Report 2014: Resilience During Drought. Camarillo, CA: Office of the
	Agricultural Commissioner. Available: http://vcportal.ventura.org/AgComm/docs/crop-
	reports/Ag%20Crop%20Report%202014%20v11%2011%2009%2015.pdf. Accessed April 12, 2016.
ARB 2008.	See Residue Burn. Find source and cite.

ARB 2015.	California Air Resources Board. 2015 (June). California's 2000-2013 Greenhouse Gas Emissions Inventory: Method Updates
	Since 2014 Edition of the Inventory. Available: http://www.arb.ca.gov/cc/inventory/doc/methods_00-
	13/2013_ei_method_update.pdf. Accessed April 12, 2016.
USDA 2016.	United States Department of Agriculture. 2016 (April). Livestock Slaughter 2015 Summary. Washington, D.C.: National
	$A gricultural\ Statistics\ Service.\ Available:\ http://usda.mannlib.cornell.edu/usda/current/LiveSlauSu/LiveSlauSu-04-20-2016.pdf.$
	Accessed April 22, 2016.
CDFA 2015.	California Department of Food and Agriculture. 2015. California Agricultural Statistics Review, 2014-2015. Sacramento, CA.
	Available: https://www.cdfa.ca.gov/Statistics/PDFs/2015Report.pdf. Accessed April 12, 2016.
Bureau of Labor Sta	at http://data.bls.gov/timeseries/APU0000706111?data_tool=XGtable
National Chicken Co	o http://www.nationalchickencouncil.org/about-the-industry/statistics/u-s-broiler-performance/
USDA 2012	https://www.agcensus.usda.gov/Publications/2012/Online_Resources/County_Profiles/California/cp06111.pdf
USDA 2015	http://www.usda.gov/nass/PUBS/TODAYRPT/Isan0415.pdf

Agriculture Land Use Changes

Unincorporated Ventura County Greenhouse Gas Emissions Inventory - 2015

Land Use	2003	2012	2014	2015	% Change	% Change	% Change 2014	Scaling Factor	Scaling Factor	Scaling Factor
Land Ose	2003	2012	2014	2013	2003 to 2015	2012 to 2015	to 2015	2003 to 2015	2012 to 2015	2014 to 2015
Important Farmland Su	124,360	118,800	121,210	120,923	-2.84%	1.76%	-0.24%	0.9716	1.0176	0.9976
Grazing Land	200,982	197,866	193,428	192,742	-4.28%	-2.66%	-0.36%	0.9572	0.9734	0.9964
All farmland (total)	325,342	316,666	314,638	313,665	-3.72%	-0.96%	-0.31%	0.9628	0.9904	0.9969

Sources

FMMP_Ventura_LandUse.xls

Stationary Sources

Unincorporated Ventura County Greenhouse Gas Emissions Inventory - 2015

Stationary Source Emissions (Oil and Gas Emissions) in 2015

		MT CO2			
Emissions Source	Activity	(non-biomass)	MT CH4	MT N2O	MT CO2e
Fuel combustion	Associated gas	170,161	3	0.26	170,305
Fuel combustion	Distillate	4,568	0	0.04	4,583
Fuel combustion	Natural gas	-	-	-	0
Fuel combustion	Residual fuel oil	-	-	-	0
Fugitive emissions	Processing	6,931	303	-	14,507
Fugitive emissions	Production	13,278	2,585	-	77,912
Fugitive emissions	Storage	-	311	-	7,787
Fugitive emissions	Wastewater Treatment	-	0	-	1
Total		194,939	3,203	0	275,096

Source: CARB Mandatory Reporting Rule - 2016 (Latest available as of 11/6/2017)

Estimating Ventura County Stationary Source Emissions from Oil and Gas

		Ventura County Emissions						
						Ventura County		
			County percent of	Ventura County	Ventura County	Emissions	% of Stat. Source	
Main Activity	Activity Subset	Ventura County Scaling Factor	state emissions	Emissions (MMT)*	Emissions (MT)*	(MTCO2e)*	O&G Emissions	GHG
Fuel combustion	Associated gas	Associated Gas (Mcf)	5%	2.61E-07	0	77.85	0.0%	N2O
Fuel combustion	Associated gas	Associated Gas (Mcf)	5%	1.70E-01	170,161	170,161.45	61.9%	CO2
Fuel combustion	Associated gas	Associated Gas (Mcf)	5%	2.61E-06	2.61	65.31	0.0%	CH4
Fuel combustion	Distillate	Oil Produced (bbls)**	4%	1.85E-07	0	4.63	0.0%	CH4
Fuel combustion	Distillate	Oil Produced (bbls)**	4%	4.57E-03	4,567.58	4,567.58	1.7%	CO2
Fuel combustion	Distillate	Oil Produced (bbls)**	4%	3.71E-08	0.04	11.04	0.0%	N2O
Fuel combustion	Natural gas	Non Associated Gas (Mcf)	0%	0.00E+00	-	-	0.0%	CH4
Fuel combustion	Natural gas	Non Associated Gas (Mcf)	0%	0.00E+00	-	-	0.0%	CO2
Fuel combustion	Natural gas	Non Associated Gas (Mcf)	0%	0.00E+00	-	-	0.0%	N2O
Fuel combustion	Residual fuel oil	Oil Produced (bbls)**	0%	0.00E+00	-	-	0.0%	CO2
Fuel combustion	Residual fuel oil	Oil Produced (bbls)**	0%	0.00E+00	-	-	0.0%	N2O
Fuel combustion	Residual fuel oil	Oil Produced (bbls)**	0%	0.00E+00	-	-	0.0%	CH4
Fugitive emissions	NA	Overall production	4%	3.03E-04	303	7,576.17	2.8%	CH4
Fugitive emissions	NA	Overall production	4%	6.93E-03	6,931	6,931.20	2.5%	CO2
Fugitive emissions	NA	Overall production	4%	2.59E-03	2,585	64,633.41	23.5%	CH4
Fugitive emissions	NA	Overall production	4%	1.33E-02	13,278	13,278.42	4.8%	CO2
Fugitive emissions	NA	Overall production	4%	3.11E-04	311	7,787.31	2.8%	CH4
Fugitive emissions	NA	Water Produced (bbls)	2%	2.00E-08	0	0.50	0.0%	CH4
				TOTAL	198,142	275,095	100.0%	

^{*} Scaled to Ventura County based on county's relative production in the state. Note that non-associated gases are generally natural gas. Associated gases are unwanted byproducts of crude oil production.

Statewide Stationary Source Emissions from Oil and Gas (Output from CARB's Statewide GHG Inventory)

GHG Emission Inventory Summary [2000 - 2016]

Sub Sector Level 1: Oil & Gas Extraction

Inventory Accounting: Included

Measurement: Gas Mass Unit: million tonnes

Statewide Emissions							
						2015 (Million	2015 (Metric
Sub Sector Level 1	Sub Sector Level 2	Sub Sector Level 3	Main Activity	Activity Subset	GHG	Metric Tons)	Tons CO2e)
Oil & Gas: Production & Processing	Not Specified	None	Fuel combustion	Associated gas	N2O	5.1372E-06	1,531
Oil & Gas: Production & Processing	Not Specified	None	Fuel combustion	Associated gas	CO2	3.346208708	3,346,209
Oil & Gas: Production & Processing	Not Specified	None	Fuel combustion	Associated gas	CH4	5.13724E-05	1,284
Oil & Gas: Production & Processing	Not Specified	None	Fuel combustion	Distillate	CH4	4.4397E-06	111
Oil & Gas: Production & Processing	Not Specified	None	Fuel combustion	Distillate	CO2	0.109454292	109,454
Oil & Gas: Production & Processing	Not Specified	None	Fuel combustion	Distillate	N2O	8.879E-07	265
Oil & Gas: Production & Processing	Not Specified	None	Fuel combustion	Natural gas	CH4	0.00025934	6,483
Oil & Gas: Production & Processing	Not Specified	None	Fuel combustion	Natural gas	CO2	13.75020079	13,750,201
Oil & Gas: Production & Processing	Not Specified	None	Fuel combustion	Natural gas	N2O	0.000025934	7,728
Oil & Gas: Production & Processing	Not Specified	None	Fuel combustion	Residual fuel oil	CO2	0	-
Oil & Gas: Production & Processing	Not Specified	None	Fuel combustion	Residual fuel oil	N2O	0	-
Oil & Gas: Production & Processing	Not Specified	None	Fuel combustion	Residual fuel oil	CH4	0	-
Oil & Gas: Production & Processing	Processing	Fugitives	Fugitive emissions	NA	CH4	0.007122541	178,064
Oil & Gas: Production & Processing	Processing	Fugitives	Fugitive emissions	NA	CO2	0.162904835	162,905
Oil & Gas: Production & Processing	Production	Fugitives	Fugitive emissions	NA	CH4	0.060763449	1,519,086
Oil & Gas: Production & Processing	Production	Fugitives	Fugitive emissions	NA	CO2	0.312084267	312,084
Oil & Gas: Production & Processing	Storage	Fugitives	Fugitive emissions	NA	CH4	0.007321038	183,026
Oil & Gas: Production & Processing	Wastewater Treatment	Fugitives	Fugitive emissions	NA	CH4	1.1401E-06	29
Source: CARB's California GHG Emission Inventory	Summary [2000 - 2016] (https://www.ar	b.ca.gov/app/ghg/2000_201	6/ghg_sector.php)	·	TOTAL	18	19,578,460

State Report on Well Count and Production of Oil, Gas, and Water by County - 2015

WELL COUNT AND PRODUCTION OF

OIL, GAS AND WATER BY COUNTY - 2015

OIL, GAS AND WATER BY COUNTY - 2015							
County	Well Count*			Net Gas Production			
	Active	Inactive	Oil Produced	Associated Gas	Non Associated Gas	Total Net Gas (Mcf)	Water Produced
			(bbls)**	(Mcf)	(Mcf)		(bbls)
Ventura	1,705	1,303	8,428,402	8,231,282	0	8,231,282	59,853,491
TOTAL	56,653	24,684	201,972,233	161,867,377	27,948,252	189,815,629	3,408,359,291
Ventura County percent of total	3%	5%	4.2%	5.1%	0.0%	4.3%	1.8%

^{*}Includes Oil & Gas (OG), Dry Gas (DG) and Gas Storage (GS)

Source: ftp://ftp.consrv.ca.gov/pub/oil/annual_reports/2015/County_Production_2015.pdf

^{**} Includes condensate from Dry Gas (DG) and Gas Storage (GS)

### 1000 ###		1000			
Method 190000	iWh/GWh				
1.0/201 1.9900					
MOBUL/Hem 1.1					
Milling MANN 3.4214488					
Year					
We continued to the continued of the c					
Multer 3,785.411784					
Illinify acrefront 32581 4.29					
Source		0.323831423			
1	WP				
1					
14	ource	IPCC Fourth Assessment Report (Avg)			
208 298)2	1			
	14	25			
Secret S	20	298			
Postatus 25% 33% 50%	ource: IPCC Fourth Assessment Re	port Factors (Chapter 2. Table 2.14)			
PS Status 25% 33% 50% EF Power Mix 2015 EF Power Mix 2015 SCE 2015 Power Content Label (https://www.energy.ca.gov/pcl/labels/2015_index.html) His Free Sources 41% EF 2015 Colculated EFs CC2/MWh 529 472.67 352.74 2016 SCE Corporate Responsibility Report CC4/GWh 14,8 1.11 Calculated from eGrid 2016 NG and Other Efs IN 20,96Wh 1.66 1.48 1.11 Calculated from eGrid 2016 NG and Other Efs IN CO2/MWh 0.240 0.215 0.160 Calculated From eGrid 2016 NG and Other Efs IN CO2/MWh 1.0240 0.215 0.160 Calculated From eGrid 2016 NG and Other Efs IN CO2/MWh 1.0240 0.215 0.160 Calculated From eGrid 2016 NG and Other Efs IN 20,96Wh 1.0240 0.215 0.160 Calculated From eGrid 2016 NG and Other Efs IN CO2/MWh 1.0240 0.215 0.160 Calculated From eGrid 2016 NG and Other Efs IN CO2/MWh 1.0240 0.215 0.160 Calculated From eGrid 2016 NG and Other Efs IN CO2/MWh 1.0240 0.025 0.020 0.0					
PS Status 25% 33% 50% EF Dower Mix 2015 EF Dower Mix 2015 SCE 2015 Power Content Label (https://www.energy.ca.gov/pcl/labels/2015_index.html) His Free Sources 33% CE 2015 Colculated EFs CO2/MWh 529 472.67 352.74 2016 SCE Corporate Responsibility Report CO4/MWh 14,8 14,95 13,35 9,97 Calculated from eGrid 2016 NG and Other Efs N2O/GWh 1.66 1.48 1.11 Calculated from eGrid 2016 NG and Other Efs N2O/GWh 1.66 1.48 1.11 Calculated from eGrid 2016 NG and Other Efs N2O/GWh 1.66 1.48 1.11 Calculated from eGrid 2016 NG and Other Efs N2O/GWh 1.0.240 0.215 0.160 Calculated SEPONTE MIX 2015 SEE 2015 Power Content Label (https://www.energy.ca.gov/pc/labels/2015_index.html) A Average Power Mix 2015 SEE 2015 Power Content Label (https://www.energy.ca.gov/pc/labels/2015_index.html) SEE 2015 Power Mix 2015 SEE 2015 Power Content Label (https://www.energy.ca.gov/pc/labels/2015_index.html) SEE 2015 Power Content Label (https://www.energy.ca.gov/pc/labels/2015_index.html) SEE 2015 Power Mix 2015 SEE 2015 Power Content Label (https://www.energy.ca.gov/pc/labels/2015_index.html) SEE 2015 Power Mix 2015 SEE 2015 Power Content Label (https://www.energy.ca.gov/pc/labels/2015_index.html) SEE 2015 Power Mix 2015 SEE 2015 Power Content Label (https://www.energy.ca.gov/pc/labels/2015_index.html) SEE 2015 Power Mix 2015 SEE 2015 Power Content Label (https://www.energy.ca.gov/pc/labels/2015_index.html) SEE 2015 Power Mix 2015 SEE 2015 Power Content Label (https://www.energy.ca.gov/pc/labels/2015_index.html) SEE 2015 Power Mix 2015 SEE 2015 Power Content Label (https://www.energy.ca.gov/pc/labels/2015_index.html) SEE 2015 Power Mix 2015 SEE 2015 Power Content Label (https://www.energy.ca.gov/pc/labels/2015_index.html) SEE 2015 Power Content Label (https://www.energ					
25 Status 25% 33% 50% E Power Mix 2015 E Power Mix 2015 E Power Mix 2015 SCE 2015 Power Content Label (https://www.energy.ca.gov/pcl/labels/2015_index.html) His Free Sources 33% E 2015 Colculated EFs CO2/MWh 529	CE CONTRACTOR OF THE CONTRACTO	2015	2020	2030	
SCE 2015 Power Content Label	PS Status	25%	33%	50%	
St. 2015 Power Content Label Interst/www.energy.ca.gov/pcl/labels/2015_index.html)		-5%	33,0	0075	
Interpret Sources 11% Interpret Sources 33% Sources 33% Sources 33% Sources 33% Sources 33% Sources Sour		26%			
### Free Sources 33%					(https://www.energy.ca.gov/pcl/labels/2015_index.html)
CE 2015 Calculated EFS S29 A72.67 352.74 2016 SCE Corporate Responsibility Report					
CO2/MWh S29 472.67 352.74 2016 SCE Corporate Responsibility Report		00%			
CH4/GWh		529	472.67	352.74	2016 SCF Corporate Responsibility Report
N20/GWh					
CO2e/MWh 0.240 0.215 0.160 Calculated Calcula					
2015 2020 2030					
PS Status 25.0% 33.0% 50% A Average Power Mix 2015 atural Gas 44% specified Sources 15% (https://www.energy.ca.gov/pcl/labels/2015_index.html) boal 6% HG Free Sources 41% A Average 2015 Calculated EFs CO2/MWh 519.21 463.8 346.1 Calculated from eGrid 2016 NG and Other Efs CO4/GWh 11.96 10.7 8.0 Calculated from eGrid 2016 NG and Other Efs CN2O/GWh 2.32 2.1 1.5 Calculated from eGrid 2016 NG and Other Efs CN2O/GWh 0.236 0.211 0.157 Calculated From eGrid 2016 NG and Other Efs	i COZe/MWn	0.240	0.215	0.160	Calculated
PS Status 25.0% 33.0% 50% A Average Power Mix 2015 atural Gas 44% specified Sources 15% (https://www.energy.ca.gov/pcl/labels/2015_index.html) bal 6% A Average 2015 Calculated EFs CO2/MWh 519.21 463.8 346.1 Calculated from eGrid 2016 NG and Other Efs CO4/GWh 11.96 10.7 8.0 Calculated from eGrid 2016 NG and Other Efs CN2O/GWh 2.32 2.1 1.5 Calculated from eGrid 2016 NG and Other Efs CO2/MWh 0.236 0.211 0.157 Calculated From eGrid 2016 NG and Other Efs	115	2045	2000	2000	
A Average Power Mix 2015 atural Gas					
SCE 2015 Power Content Label		25.0%	33.0%	50%	
Inspecified Sources					
coal 6% HG Free Sources 41% A Average 2015 Calculated EFs CO2/MWh 519.21 463.8 346.1 Calculated from eGrid 2016 NG and Other Efs C CH4/GWh 11.96 10.7 8.0 Calculated from eGrid 2016 NG and Other Efs N N 20/GWh 2.32 2.1 1.5 Calculated from eGrid 2016 NG and Other Efs IT CO2e/MWh 0.236 0.211 0.157 Calculated					
HG Free Sources 41% A Average 2015 Calculated EFs CO2/MWh 519.21 463.8 346.1 Calculated from eGrid 2016 NG and Other Efs CH4/GWh 11.96 10.7 8.0 Calculated from eGrid 2016 NG and Other Efs N2O/GWh 2.32 2.1 1.5 Calculated from eGrid 2016 NG and Other Efs CT CO2e/MWh 0.236 0.211 0.157 Calculated from eGrid 2016 NG and Other Efs CT CO2e/MWh 0.236 0.211 0.157 Calculated					(https://www.energy.ca.gov/pcl/labels/2015_index.html)
A Average 2015 Calculated EFS CO2/MWh 519.21 463.8 346.1 Calculated from eGrid 2016 NG and Other Efs CH4/GWh 11.96 10.7 8.0 Calculated from eGrid 2016 NG and Other Efs N2O/GWh 2.32 2.1 1.5 Calculated from eGrid 2016 NG and Other Efs O N2O/GWh 1.5 C					
CO2/MWh 519.21 463.8 346.1 Calculated from eGrid 2016 NG and Other Efs CCH4/GWh 11.96 10.7 8.0 Calculated from eGrid 2016 NG and Other Efs N2O/GWh 2.32 2.1 1.5 Calculated from eGrid 2016 NG and Other Efs NT CO2e/MWh 0.236 0.211 0.157 Calculated		41%			
CH4/GWh 11.96 10.7 8.0 Calculated from eGrid 2016 NG and Other Efs N2O/GWh 2.32 2.1 1.5 Calculated from eGrid 2016 NG and Other Efs NT CO2e/MWh 0.236 0.211 0.157 Calculated from eGrid 2016 NG and Other Efs Calculated from eGrid 2016 NG and Other Efs Calculated from eGrid 2016 NG and Other Efs NT CO2e/MWh 0.236 0.211 0.157					
N2O/GWh 2.32 2.1 1.5 Calculated from eGrid 2016 NG and Other Efs OT CO2e/MWh 0.236 0.211 0.157 Calculated		519.21	463.8	346.1	Calculated from eGrid 2016 NG and Other Efs
TT CO2e/MWh 0.236 0.211 0.157 Calculated	CH4/GWh	11.96	10.7	8.0	Calculated from eGrid 2016 NG and Other Efs
AT CO2e/MWh 0.236 0.211 0.157 Calculated	3.1.1/ 3.11.11	2.32	2.1	1.5	Calculated from eGrid 2016 NG and Other Efs
			0.211	0.157	Calculated
Grid 2016 Emission Factors (For Calculation of California Average EFs)	N2O/GWh	0.236	0.211		
•	N2O/GWh	0.236	0.211		
	N2O/GWh T CO2e/MWh		0.211		

4/29/2019

			https://www.epa.gov/energy/emissions-generation-resource-
atural Gas EFs: eGRID2016 Average	of California Natural Gas Electricity Plant EFs		integrated-database-egrid
CO2/MWh	867.88		Weighted average based on annual plant net generation
cH4/GWh	16.50		Weighted average based on annual plant net generation
o N2O/GWh	1.66		Weighted average based on annual plant net generation
MT CO2e/MWh	0.3941		Calculated
Coal EFs: eGRID2016 Average of Cali	fornia Coal Electricity Plant EFs		https://www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid
b CO2/MWh	1157.82		Weighted average based on annual plant net generation
b CH4/GWh	13.41		Weighted average based on annual plant net generation
b N2O/GWh	18.98		Weighted average based on annual plant net generation
MT CO2e/MWh	0.5279		Calculated
Inspecified EFs: eGRID2016 CAMX E	mission Factors		Assumed to represent unspecified power sources
b CO2/MWh	452.50		CAMX avg
b CH4/GWh	26.00		CAMX avg
b N2O/GWh	3.00		CAMX avg
g/MWh	205.25		Calculated
g/GWh	11.79		Calculated
g/GWh	1.36		Calculated
Jtility Natural Gas Emission Factors			
g CO ₂ /MMBtu	53.06	Natural Gas - US Weighted Average	2017 Climate Registry Emission Factors. Table 12.1.
; CH4/MMBtu	4.7	Natural Gas - Residential/Commercial	2017 Climate Registry Emission Factors. Table 12.9.
N2O/MMBtu	0.1	Natural Gas - Residential/Commercial	2017 Climate Registry Emission Factors. Table 12.9.
/IT CO2/therm	0.005306		Calculated
/IT CH4/therm	0.000047		Calculated
/IT N2O/therm	0.000001		Calculated
MT CO2e/therm	0.0068		Calculated

The Climate Registry 2017 Default Emission Factors

Fuel Type	Carbon Content (Per Unit Energy)	CO2 Emission Factor (Per Unit Volume)
Fuels Measured in Gallons	kg C / MMBtu	kg CO2 / gallon
Gasoline	19.2	8.78
Diesel Fuel	20.2	10.21
Aviation Gasoline	18.9	8.31
Jet Fuel (Jet A or A-1)	19.7	9.75
Kerosene	20.5	10.15
Residual Fuel Oil No. 5	19.9	10.21
Residual Fuel Oil No. 6	20.5	11.27
Crude Oil	20.3	10.29
Biodiesel (B100)	20.1	9.45
Ethanol (E100)	18.7	5.75
Methanol	n/a	4.10
Liquefied Natural Gas (LNG)*	n/a	4.46
Liquefied Petroleum Gas (LPG)	17.2	5.68
Propane (Liquid)	16.8	5.72
Ethane	17.1	4.11
Isobutane	17.7	6.30
Butane	17.8	6.54
Fuels Measured in Standard Cubic	Feet kg C / MMBtu	kg CO2 / Standard cubic foot
Compressed Natural Gas (CNG)*	14.47	0.054
Propane (Gas)	16.76	0.1546

Source: Heat content and default emission factors are from EPA Final Mandatory Reporting of Greenhouse Gases Rule Table C-1.

Carbon content derived using the heat content and default emission factor. Except those marked * are from EPA Climate Leaders, Mobile Combustion Guidance, Tables B-4, B-5, (2008). A fraction oxidized value of 1.00 is from the IPCC, *Guidelines for National Greenhouse Gas Inventories* (2006). Methanol emission factor is calculated from the properties of the pure compounds.

Note: Carbon contents are calculated using the following equation: (Emission Factor / (44/12)) / Heat Content × Conversion Factor. Heat content factors are based on higher heating values (HHV). NA = data not available.

Vehicle Type / Fuel Type	CH4	N2O
	(g / gallon)	(g / gallon)
Ships and Boats		
Residual Fuel Oil	0.11	0.60
Diesel Fuel	0.74	0.45
Gasoline	0.06	0.22
Locomotives		
Diesel Fuel	0.80	0.26
Agricultural Equipment		
Gasoline	1.26	0.22
Diesel Fuel	1.44	0.26
Construction/Mining Equipment		
Gasoline	0.50	0.22
Diesel Fuel	0.58	0.26
Other Non-Highway		
Snowmobiles (Gasoline)	0.50	0.22
Other Recreational (Gasoline)	0.50	0.22
Other Small Utility (Gasoline)	0.50	0.22
Other Large Utility (Gasoline)	0.50	0.22
Other Large Utility (Diesel)	0.58	0.26
Aircraft		
Jet Fuel	0.00	0.31
Aviation Gasoline	7.05	0.11
Source: US Inventory of Greenhouse Gas	Emissions and Sinks 1990-2011 (April 2	013) Annex 3, Table

A-106. Original factors converted to g/gallon fuel using fuel density defaults from U.S. EPA Climate Leaders, Mobile Combustion Guidance (2008) Table A-6.

Vehicle Type / Fuel Type	CH4	N2O
	(g / L)	(g / L)
Diesel Passenger Cars		
Advanced	0.0005	0.0010
Moderate	0.0005	0.0010
Uncontrolled	0.0006	0.0012
Diesel Light Trucks		
Advanced	0.0010	0.0015
Moderate	0.0009	0.0014
Uncontrolled	0.0011	0.0017
Diesel Medium and Heavy-Duty Vehicl	es (Trucks and Busses)	
Aftertreatment	0.0051	0.0048
Advanced	0.0051	0.0048
Moderate	0.0051	0.0048
Uncontrolled	0.0051	0.0048
CNG Medium and Heavy-Duty Vehicles	s (Trucks and Busses)	
CNG	1.9660	0.1750

Fuel Type	Heat Content	CO2 Emission Factor (Per Unit Energy)	CO2 Emission Factor (Per Unit Mass or Volume)
Natural Gas	Btu / scf	kg CO2 / MMBtu	kg CO2 / scf

4/29/2019

Assumptions

US Weighted Average	1026.00	53.06	0.05
Greater than 1,000 Btu*	>1000	53.06	varies
975 to 1,000 Btu*	975 – 1,000	54.01	varies

Fuel Type / End-Use Sector	CH4 (g / MMBtu)	N2O (g / MMBtu)
Coal	(3:	(3)
Residential	300.7	1.5
Commercial	10.0	1.5
Petroleum Products		
Residential	10.0	0.6
Commercial	10.0	0.6
Natural Gas		
Residential	4.7	0.1
Commercial	4.7	0.1
Wood		
Residential	253.2	3.4
Commercial	253.2	3.4

2013 - 2015 Population growth						
Population	2013	2015	Growth from 2013	Source		
Ventura County	836,154	NA	NA	County of Ventura. 2013 Water Supply and Demand.		
Ventura County	840,867	850,491	1%	Department of Finance		
Unincorporated County		97,733		Department of Finance		
City of Ventura Population		108,037		Department of Finance		
Population supplied by City of Ventura		112,412		City of Ventura 2015 UWMP		

EMFAC 2017 Emission Factor Summary by SCAG Vehicle Category

SCAG Vehicle Category	CO2 g/mi C	H4 g/mi	N2O g/mi	VMT Test	
Light Duty	360.2	0.0113	0.0001	15,367,891	81%
Heavy Duty	676.7	0.0190	0.0003	3,498,707	18%
Buses	1502.3	1.6224	0.0039	51,641	0.27%
				18,918,239	
				43800	

g per ton 907185

Output from EMFAC 2017

EMFAC2017 (v1.0.2) Emissions Inventory

Region Type: County Region: VENTURA Calendar Year: 2015 Season: Annual

Vehicle Classification: EMFAC2007 Categories

Units: miles/day for VMT, trips/day for Trips, tons/day for Emissions, 1000 gallons/day for Fuel Consumption

										Weighted by VMT and SCAG Vehicle Category					
Region	Calendar Y Vehicle (CatSCAG VEH CAT	Model Year	Speed	Fuel	Population [®]	VMT	Trips	CO2 g/mi	CH4 g/mi	N2O g/mi	CO2 g/mi	CH4 g/mi	N2O g/mi	
VENTURA	2015 HHDT	Heavy Duty	Aggregated	Aggregated	GAS	10.45532	201.3982	209.1899	2785.411	0.881322	0	0.160338	5.07E-05	0	
VENTURA	2015 HHDT	Heavy Duty	Aggregated	Aggregated	DSL	2856.269	284092.6	26805.65	1751.784	0.017333	0.002129	142.2437	0.001407	0.000173	
VENTURA	2015 HHDT	Heavy Duty	Aggregated	Aggregated	NG	56.59271	2269.64	220.7116	3747.758	8.386015	0.051671	2.431202	0.00544	3.35E-05	
VENTURA	2015 LDA	Light Duty	Aggregated	Aggregated	GAS	257764.5	9735877	1202803	316.1007	0.007679	0	200.2563	0.004865	0	
VENTURA	2015 LDA	Light Duty	Aggregated	Aggregated	DSL	2796.395	112916.6	13162.62	235.6607	0.001433	0	1.731533	1.05E-05	0	
VENTURA	2015 LDA	Light Duty	Aggregated	Aggregated	ELEC	1140.434	40720.84	5813.706	0	0	0	0	0	0	
VENTURA	2015 LDT1	Light Duty	Aggregated	Aggregated	GAS	29792.02	997682.6	132083.3	373.7735	0.01987	0	24.26536	0.00129	0	
VENTURA	2015 LDT1	Light Duty	Aggregated	Aggregated	DSL	54.68934	1029.592	191.4097	436.7623	0.013292	0	0.029261	8.91E-07	0	
VENTURA	2015 LDT1	Light Duty	Aggregated	Aggregated	ELEC	32.97446	940.8672	155.8403	0	0	0	0	0	0	
VENTURA	2015 LDT2	Light Duty	Aggregated	Aggregated	GAS	97569.81	3640831	453078.5	416.0682	0.010528	0	98.57137	0.002494	0	
VENTURA	2015 LDT2	Light Duty	Aggregated	Aggregated	DSL	322.5063	14907.64	1592.299	330.01	0.001343	0	0.320127	1.3E-06	0	
VENTURA	2015 LDT2	Light Duty	Aggregated	Aggregated	ELEC	11.25957	370.4754	55.94908	0	0	0	0	0	0	
VENTURA	2015 LHDT1	Light Duty	Aggregated	Aggregated	GAS	9667.95	322240.2	144038	850.1204	0.019494	0.003761	17.82567	0.000409	7.89E-05	
VENTURA	2015 LHDT1	Light Duty	Aggregated	Aggregated	DSL	7012.299	267489	88205.91	518.1401	0.006361	0.000134	9.018595	0.000111	2.33E-06	
VENTURA	2015 LHDT2	Light Duty	Aggregated	Aggregated	GAS	1520.846	55364.76	22658.34	967.5943	0.010591	0.003614	3.48588	3.82E-05	1.3E-05	
VENTURA	2015 LHDT2	Light Duty	Aggregated	Aggregated	DSL	2290.518	91034.81	28811.84	569.3862	0.005418	0.000128	3.372874	3.21E-05	7.6E-07	
VENTURA	2015 MCY	Light Duty	Aggregated	Aggregated	GAS	16078.67	86485.62	32157.33	237.4706	0.364528	0	1.336409	0.002051	0	
VENTURA	2015 MDV	Heavy Duty	Aggregated	Aggregated	GAS	80904.03	2792548	373672.3	495.8916	0.011941	0	395.8037	0.009531	0	
VENTURA	2015 MDV	Heavy Duty	Aggregated	Aggregated	DSL	929.7188	41024.04	4600.713	428.7903	0.000916	0	5.027774	1.07E-05	0	
VENTURA	2015 MDV	Heavy Duty	Aggregated	Aggregated	ELEC	3.21702	65.62526	13.79356	0	0	0	0	0	0	
VENTURA	2015 MH	Heavy Duty	Aggregated	Aggregated	GAS	4449.139	39906.79	445.0918	1749.411	0.037777	0	19.95405	0.000431	0	
VENTURA	2015 MH	Heavy Duty	Aggregated	Aggregated	DSL	1116.306	11871.49	111.6306	991.4394	0.003869	0	3.364061	1.31E-05	0	
VENTURA	2015 MHDT	Heavy Duty	Aggregated	Aggregated	GAS	827.5784	33933.13	16558.19	1791.462	0.054889	0.005401	17.37496	0.000532	5.24E-05	
VENTURA	2015 MHDT	Heavy Duty	Aggregated	Aggregated	DSL	5433.838	292793.9	55084.74	1079.564	0.018522	0.000259	90.34478	0.00155	2.17E-05	
VENTURA	2015 OBUS	Buses	Aggregated	Aggregated	GAS	258.9701	10905.03	5181.474	1775.904	0.028466	0.004441	375.0179	0.006011	0.000938	
VENTURA	2015 OBUS	Buses	Aggregated	Aggregated	DSL	159.1362	8932.726	1405.788	1176.573	0.021539	0.000867	203.5207	0.003726	0.00015	
VENTURA	2015 SBUS	Buses	Aggregated	Aggregated	GAS	63.61691	2522.652	254.4676	1018.277	0.130735	0.05242	49.74267	0.006386	0.002561	
VENTURA	2015 SBUS	Buses	Aggregated	Aggregated	DSL	331.64	10257.16	3827.08	1448.399	0.013532	0.00103	287.6876	0.002688	0.000205	
VENTURA	2015 UBUS	Buses	Aggregated	Aggregated	GAS	56.68692	4226.761	226.7477	1688.447	0.004711	0	138.1977	0.000386	0	
VENTURA	2015 UBUS	Buses	Aggregated	Aggregated	DSL	43.9393	3327.786	175.7572	1690.819	0.091868	0	108.9578	0.00592	0	
VENTURA	2015 UBUS	Buses	Aggregated	Aggregated	ELEC	0.114167	2.640406	0.456668	0	0	0	0	0	0	
VENTURA	2015 UBUS	Buses	Aggregated	Aggregated	NG	107.2596	11466.2	429.0385	1527.621	7.193905	0	339.1884	1.597313	0	